Extending testing to include physics regression, a proposal

Current Status Analysis New Requirements

- Current Nightly and CDash system:
 - ---- Code stability oriented
 - Success defined as: Run to completion, stderr empty
- Investigate automatic extension to include some physics regression testing

 - Last G4 Week collaboration expressed interest in extending nightlies to include more physics oriented tests
- Geant4 is ''unifying'' analysis approach: automatic ROOT output

\dashv Requirements:

- NFR: Ease to interpret results: a "shift" system could be put in place. Results should be interpreted by non-experts
- ---- FR: Both **binned** and **un-binned** distributions
- --- FR: System should **provide summary or verbose output**

Basic Idea

- Derived from my experience in ATLAS' DQ
- Basic idea: an ''DQ Algorithm'' is a combination of:
 - An input (e.g. an Histogram) with simulation results
 - A Test (e.g. implementation of Kolmogorov test)
 - --- An Output: a simple flag based on Test output
- A simple way to **configure** define an set of Algorithms is provided
- Pre-requisite: G4 application should provide ROOT file with THI (binned) or TTree (un-binned) distributions

Implementation

— pyROOT library of algorithms implemented

- Use ROOT's implementation of tests
- New tests can be added
 - Simple interface: each test returns a number: the result (e.g. p-value)

Binned	Un-binned
KS Test	KS Test
Chi2 Test	Anderson-Darling
Chi2 Test (weighted)	

Define Result

- An Output is defined as a **three-state** objects:
 - Two thresholds (low, high) are specified and compared to the output of the test R
 - ── If **R < low** then FAILED
 - If low < R < high then NOTPASSED</p>
 - Shifter / expert should investigate
 - If R > high then SUCCESS

Configuration: one file for test

```
Binned = \{
  #Define the defaults
   'DefaultTestName' : 'Binned | DChi2Test',
   'DefaultThresholds' : [0.1,0.5],
   'DefaultReferenceFile' : 'reference.root',
  #Define inputs: histograms a list of dictionaries
   'Histos' : [
      #Group I
        'Name' : 'h2',
        'Thresholds' : [ 0.1 , 0.7 ]
     #Group 2
        'Name' : '/ADirectory/.*',
      },
     ] #End of Histos definition
```

} #End of configuration

Defaults

Test number 1: overwrite thresholds

Test number 2: regexp are allowed, test a TDirectory with defaults

Minimal configuration

Binned = $\{$

'DefaultTestName' : 'Binned I DChi2Test','DefaultThresholds' : [0.1,0.5],'DefaultReferenceFile' : 'reference.root',

```
'Histos' : [
#Group 2
{
'Name' : '.*',
},
]
```

Result:

All histograms tested against reference with Chi2 test. Could be reasonable default for any G4 test

Current Status

- Prototype:

- ---- Some tests implemented
- ROOT I/O handling
 - Histograms and TBranches supported
- Configuration for binned distributions (un-binned missing)
- Application that runs tests and produces graphical output (PDF file)

Border: code-color

Conclusions

- Prototype for automatic testing of simulation output
- Each test author should provide:
 - Reference file: simply the output of a "good" G4 version
 - Configuration file: in simple cases a default can work

— Missing:

- Conclude un-binned distributions
- Testing on realistic cases
- Integrate with CDash
- Compare to Theory
- If interesting I can propose to collaboration and ask for developer (Validation Task Force)