
 1

Data integrity

Bernd Panzer-Steindel, CERN/IT
Draft 1.3 8. April 2007

Executive Summary

We have established that low level data corruptions exist and that they have several
origins. The error rates are at the 10-7 level, but with complicated patterns. To cope with
the problem one has to implement a variety of measures on the IT part and also on the
experiment side. Checksum mechanisms have to implemented and deployed everywhere.
This will lead to additional operational work and the need for more hardware.

Introduction

During January and February 2007 we have done a systematic analysis of data corruption
cases in the CERN computer center. The major work in the implementation of probes and
automatic running schemes were done by Tim Bell, Olof barring and Peter Kelemen from
the IT/FIO group. There have been similar problems reported in Fermilab and Desy and
information exchange with them was done.
The following paper will provide results from this analysis, a judgment of the situation
and a catalogue of measures needed to get the problem under control.
It is also to be seen as a starting point for further discussions with IT, the experiments and
the T1 sites.

Status

There have been several activities to accumulate statistics and understand the underlying
problems for the seen data corruptions:

1. Disk errors

A special program was developed by Olof Barring and than Peter Kelemen
improved it considerably and he is now responsible for the program This program
writes a ~2 GB file containing special bit patterns and afterwards reads the file
back and compares the patterns. This program was deployed on more than 3000
nodes (disk server, CPU server , data bases server, etc.) and run every 2h.
About 5 weeks of running on 3000 nodes revealed 500 errors on 100 nodes.

 2

Three different types of errors were seen :
 single bit errors (some correlation with ECC memory errors) (10 % of all

errors)
 sector- or page-sized regions of corrupted data (10% of all errors)
 64k regions of corrupted data, one up to 4 blocks (large correlation with the

3ware-WD disk drop-out problem) (80% of all errors) different ‘style’ of
corruption between SLC4 and SLC3

2. RAID 5 verification

The RAID controllers don’t check the ‘parity’ when reading data from RAID 5
file systems. In principle the RAID controller should report problems on the disk
level to the OS, but this seems not always to be the case. The controller allows to
run the ‘verify’ command which reads all data from disk and re-calculates the
RAID5 checksum and corrects the discovered bad RAID5 blocks (block size is 64
KB). But of course it does not have a notion of what is ‘correct’ data from the
user point of view.

 Running the verify command for the RAID controller on 492 systems over 4
weeks resulted in the fix of ~300 block problems. The disk vendors claims about
one unrecoverable bit error in 1014 bits read/written. The 492 systems correspond
to about 1.5 PB of disk space. To get the real number of physical bits touched
during the process one has to include the fact that the data on disk contain an ECC
overhead (~17%) and that the ‘parity’ disk is also used, which leads to an increase
of 35%. Thus over 4 weeks in total

 1.5 * 1015 (bytes) * 1.35 (effective) * 8 (bits) * 4 (weeks)
 ~650 * 1014 bits were read by the verify process.
 During the same period about 200 * 1014 bits were read/written by the
 applications.
 The first thing to notice is that the verify command stresses the disks 3 times
 more than the actual physics applications, by just running it once per week.
 The second observation is the that we measured about 300 errors while from the
 mentioned BER (Bit Error Rate) and the usage one would expect about 850
 errors. As the vendor BER numbers are normally on the ‘safe’ side the
 measurement is close to the expectation.

3. Memory errors
 We have 44 reported memory errors (41 ECC and 3 double bit) on ~1300 nodes

during a period of about 3 month. The memory vendors quote a Bit Error Rate of
10-12 for their memory modules. The 1.5 PB of disk servers run during that
period at an average IO rate of 800 MB/s. To transfer a byte from the network to
the disk or vice versa needs on average 6 memory read/write operations (read
from NIC buffer – write to kernel memory read from kernel memory – write to
application user memory read from application memory – write to file buffer
kernel memory read from file memory – write to disk). And of course the
same transfers take place on the worker node and the tape server. Thus the 800
MB/s translate into 800 MB/s * 8 bit * 6 * 2 = 7.7 * 1010 bits/s of memory
read/written per second. With the quoted vendor error rate of 10-12 one would

 3

expect during 3 month a total of 600000 ECC single bit errors reported. Thus the
observed error rate is 4 orders of magnitude lower than expected for the single bit
errors, while one would expect no double bit errors. But there is also a problem
with the correct reporting of ECC errors to the IPMI level, which is motherboard
dependent and we might have not ‘seen’ all errors.

 Single bit errors don’t lead to data corruptions as they are corrected, only double
bit error do cause problems.

4. CASTOR data pool checksum verification

All the previously mentioned error will of course result in the corruption of user
data. To assess the size of the problem, files on a disk pool were checked and the
previously calculated checksum on tape was compared with another adler32
calculation. During a test 33700 files were checked (~8.7 TB) and 22 mismatches
found.
That translates into an error rate of one bad file in 1500 files. Assuming that the
majority are 64KB problems and on average there are 2 wrong blocks then this
yields a byte error rate of 3 * 10-7 .

Remark : This number is only true for non-compressed files. A test with 10000
compressed files showed that with a likelihood of 99.8 % a SINGLE bit error
makes the whole file unreadable, thus the data loss rate would be much higher for
compressed files

There are some correlations with known problems, like the problem where disks drop out
of the RAID5 system on the 3ware controllers. After some long discussions with 3Ware
and our hardware vendors this was identified as a problem in the WD disk firmware. We
are currently updating the firmware of about 3000 disks.
We also had a case of memory incompatibility where memory modules on 120 nodes had
to be exchanged. In this area one can watch in industry the problem of shorter and shorter
periods of ‘throwing’ new chipsets on the market and a growing memory-chipset
problem-matrix. During our tests we have also seen errors on high-end hardware and the
recent publications about disk reliabilities also indicate no major difference between
different types of hardware.
http://labs.google.com/papers/disk_failures.pdf
http://www.usenix.org/events/fast07/tech/schroeder/schroeder_html/index.html

There is a clear distinction between ‘expected’ errors based on the vendors reliability
figures and obvious bugs/problems in the hardware and software parts.

The fact that the disk probe reports regularly corruption errors as described in point 1
shows clearly that the different protection mechanisms don’t work 100% , i.e. not every
errors in the data flow is correctly treated and reported to the upper layers.

 4

The problem here is the large amount of controllers/memory/chipsets we have in the
computing system. Data has to pass through a long chain of equipment in its lifetime.

In principle the whole data flow chain is protected through the implementation of ECC
(Error Correction Code) and CRC (Cyclic redundancy Check) :

1. The memory is capable of correcting single bit error
2. the cache in the processor is ECC protected
3. PCIe and SATA connections have CRC implemented
4. the disk cache has ECC memory and the physical writing to disk has as well ECC

as CRC in a complicated manner implemented to correct up to 32 byte errors (per
256 bytes) and detect any data corruption. The data is actually 5 times encoded
before it reaches physically the disk.

The following picture shows a principle layout of the data flow inside the farm and inside
a node:

 5

Measures

The ensure data integrity and have an early warning system the following actions need to
be taken on several different layers :

1. continuously running probes in the background to check for errors on disk and in
memory

2. regular scrubbing of the disk and memory systems
3. close monitoring of error messages (logs, IPMI, etc.) and improvements in this

area
4. the applications need to deploy CRC checks during writing and before reading of

any data

Client part

There are several possibilities to ensure data integrity on the client side, but not all of
them can really be implemented :

1. Writing
the application calculates the checksum of every block/event, writes it to disk, syncs
the disk and reads it back for checksum comparison. Checksums for all blocks/events
are stored in a data base.

 destroys completely the disk performance, large data base needed

2. Writing
the application calculates the checksum of every block/event, writes it to disk, syncs
the disk and reads it back for checksum comparison. The application integrates the
checksum itself into the data stream, so that the data are self-describing.

 Still requires a re-read of the data and considerable changes in the
application

3. Writing
 creates a running checksum for the whole file to be written to disk, re-read the
 file at the end of the job for checksum comparison

 doubles the needed IO performance, only possible for file writing during
 processing and re-processing, does not work for event-building

4. Writing
All data are encoded with an ECC algorithm which is capable to correct multiple
64 Kbyte blocks of data.

 must be a special algorithm as normal ones are coping with 10s of byte
corrections only. At least 20% more data data needs to be written. More
CPU resources needed to do the encoding.

 6

5. Reading
 the application reads the file from disk first for a checksum verification and then
 again for processing

 doubles the read performance needed, assumes that no corruption appears
in the time–interval between the first check and the end of the processing
(jobs can run for 10h or longer)

Block level checksums need quite a sophisticated infrastructure and seems not to be a
reasonable option and the same is true for ECC data encoding. All this would need quite
some effort from the experiment application side, which seems today not a feasible
option.

As an example for the DAQ-T0-T1 chain the following checks need to be done to ensure
data integrity:

1. the checksum of a file is calculated at the experiment before it is written to the
online buffer

 if it is wrong when checked in the online disk buffer , there is no way to
recover

2. the checksum is verified when the experiment application uses the file for

processing
 if it is wrong it needs to be re-copied from the online buffer

3. the checksum is verified while the file is written to tape

 but the checksum is calculated on-the-fly while the file is copied to tape,
 thus a wrong file needs a long procedure of cleaning in CASTOR and re-
 copying from the online buffer.

4. the checksum is verified at the tape level on the T1 site
 needs re-transfer if the checksum is wrong

A prerequisite to these procedures is the propagation of the checksum and file-id from the
online part to the T0 and the T1 sites, which can be part of the LFC and bookkeeping
experiment data bases.

Server part

The following procedures must run constantly as background processes :

 disk probe on each node for each file system, writing and cross-checking a file
every 2 h (ok)

 memory probe on each node, checking 1 GB of memory every 4h (partly ok)
 RAID5 consistency checks once per week on each disk server (ok)

 7

 IPMI sensor to report all errors (cable CRC, memory ECC, etc.) and provide
alarms (partly ok)

 CASTOR pool checksum verification of every file, once per week (not yet done)

 ok means these are already implemented and running today

If the probes discover problems than the corresponding node needs to be stopped and
investigated. There are still some more questions to be answered :
e.g. At time t1 the node was still okay and than reported problems at time t2, should one
than invalidate all files written during that time period ?! this requires some sophisticated
tracking which is not yet in place.

Summary

We have established that low level data corruptions exist and that they have several
origins. There is some effort to reduce them, but it is very unlikely that they will
disappear completely. We will rather see from time to time (new hardware, software,
firmware, etc.) an increase in the corruption cases and a constant careful monitoring of
the situation is required.
We have deployed already several means to control the situation, but more probes and
monitoring needs to be done. The involvement of the experiment application level is
absolutely necessary.

The implementation of all these means will lead to a doubling of the original required IO
performance on the disk servers and also needs an increase of the available CPU capacity
on the disk servers (50% ?!). This will of course have an influence on the costing and
sizing of the CERN computing facility.

We have also to continue to investigate the causes of all these errors and have constantly
monitor the systems. All this will of course create additional operational load on the
people.

The effort to cope with this problem has to start right now.

