

Top quark production at the Tevatron

Marc Besançon CEA-Saclay/Irfu/SPP

on behalf of the CDF and D0 experiments

Flavor Physics and CP violation 2012

May 21-25

University of science and technology of China (USTC), Hefei, AnHui

OUTLINE

top quark pair production
 top quark pair production cross section
 Forward Backward asymmetry
 spin correlation
 ratio of branching fractions
electroweak (EW) single top quark production
 cross sections and |V_{tb}| measurements

search for new physics in top quark production

FERMILAB TEVATRON

the place of the discovery of the top quark

Tevatron stopped taking data on september 30, 2011

evatron

Top quark production at Tevatron

QCD pair production

PRD 78, 034003 (2008)

Top quark production at Tevatron

 $\sigma_{_{NNLO}} = 7.46^{_{+0.143}}_{_{-0.232}} \text{ (scales)}^{_{+0.186}}_{_{-0.122}} \text{ (pdf) pb}$ ArXiv:1204.5201 (for a top mass of 173.3 GeV) **EW single top production**

s-channel $\sigma = 1.05 \pm 0.07$ pb t-channel $\sigma = 2.10 \pm 0.19$ pb both for $m_{top} = 172.5$ GeV

single top associated production Wt 5 $\sigma \sim 0.2$ pb, too small at Tevatron

top pair production

Why study top quark pair production ?

- top quark is a unique particle heaviest of all known particles decays before hadronizing
- provides QCD and SM tests
- measuring the production cross section

$$\sigma_{t\,\overline{t}} = \frac{N_{\text{DATA}} - N_{\text{Background}}}{\text{Acc} \int \mathbf{L} \, \mathrm{dt}}$$

is the 1st step in understanding any selected ttbar sample

- new physics can change overall production rate rate in different channels
- top pair production is background for searches

top pair production (lepton+jets)

top pair production

- dominant uncertainties: JES, b-tag acc., W + b-jet background
- in agreement with SM theoretical predictions
- consistent across channels, methods, experiments

CDF		DØ Run II	July 2011
Cacciari et al., arXiv:0804.2800 (20 Kidonakis & Vogt, arXiv:0805.3844 Moch & Uwer, arXiv:0807.2794 (20	008) Assume m _t =172.5 GeV/c ² (2008) 008)	lepton+jets + dileptons (PLB) 5.4 fb ⁻¹	7.40 +0.19 +0.57 pb
Dilepton (L= 5.1 fb ⁻¹)	$7.40 \pm 0.58 \pm 0.63 \pm 0.45$	lepton+jets (topo + b-tagged, PRD) 5.3 fb ⁻¹	H 7.65 ^{+0.25} _{-0.25} ^{+0.75} _{-0.57} pb
Lepton+jets (topological) ($l = 4.6 \text{ fb}^{-1}$)	$7.82 \pm 0.38 \pm 0.37 \pm 0.15$	dileptons (topo + b-tagged, PLB) 5.4 fb ⁻¹	7.27 ^{+0.45} ^{+0.76} _{-0.45} ^{+0.76} _{-0.63} pb
Lepton+jets (b-tagged) (L= 4.3 fb ⁻¹)	$7.32 \pm 0.36 \pm 0.59 \pm 0.14$	lepton+track (b-tagged)* 1.0 fb ⁻¹ tau+lepton (b-tagged)*	5.0 +1.6 +0.9 ±0.3 pb −1.4 −0.8 ±0.3 pb 7.32 +1.34 +1.20 ±0.45 pb
All-hadronic (L= 2.9 fb ⁻¹)	$7.21 \pm 0.50 \pm 1.10 \pm 0.42$	tau+jets (b-tagged, PRD)	6.30 ^{+1.15} ^{+0.72} _{+0.40} pb
MET+>3jets (L= 2.2 fb ⁻¹)	$7.99 \pm 0.55 \pm 0.76 \pm 0.46$	alljets (b-tagged, PRD)	← 6.9 ^{+1.3} ^{+1.4} _{-1.3} ^{+1.4} ±0.4 pb (stat) (syst) (lumi)
MET+2/3jets (L= 5.7 fb ⁻¹)	$7.11 \pm 0.49 \pm 0.96 \pm 0.43$ (stat) \pm (syst) \pm (lumi)	m _{top} = 175 GeV M. Cacciari et al., JHE CTEQ6.6M S. Moch and P. Uwer,	EP 0809, 127 (2008) /ogt, PRD 78, 074005 (2008) , PRD 78, 034003 (2008)
4 5 6 7 σ	8 9 10 11 12 (pp \rightarrow tt̄) (pb)	$\begin{array}{c ccccc} 0 & 2 & 4 & 6 \\ & * = \text{preliminary} \\ & \text{red} = 2011 \text{ result} \\ & \text{blue} = 2010 \text{ results} \end{array} \qquad \sigma (p \overline{p} \rightarrow t \overline{t} + \lambda)$	8 10 12 () [pb]

CDF combination : 7.50 ± 0.48 pb i.e. 6.4 % precision

all measurement limited 9 by systematic uncertainty

Forward backward asymmetry

Do top quarks follow preferentially the initial quark or anti quark direction ?

- LO QCD : no charge asymmetry expected
- NLO QCD : interference between quark- anti quark diagrams predicts ~ 7 % asymmetry (JHEP 0709,126 (2007) & 1201,063 (2012), PRD84, 093003 (2011))

New physics could give rise to an asymmetry (Z', axigluons ...)

Forward backward asymmetry

- reconstruct the direction and the rapidity of *t* and \overline{t} quarks $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$ - use the rapidity difference $\Delta y = y_t - y_{\overline{t}}$ of $t \to l \nu b$ and $t \to jjb$

- subtract Background from Data CDF : background from MC prediction

D0 : background fitted with likelihood discrimant

- correct for acceptance and resolution effects (unfolding) back to production level

The asymmetry in ~ 5 fb^{-1}

A_{fb} of the Top Quark

unclear dependence on $M_{t\bar{t}}$ and Δy

Forward-Backward Top Asymmetry, %

CDF : PRD 83,112003 (2011), Conf notes 10436 & 10584 D0 : PRD 84,112055 (2011) 12

The asymmetry in ~ 5 fb^{-1}

A_{fb} of the Top Quark

unclear dependence on $M_{t\bar{t}}$ and Δy

CDF : PRD 83,112003 (2011), Conf notes 10436 & 10584 D0 : PRD 84,112055 (2011) 13

Asymmetry with the full dataset

CDF Run II Preliminary L = 8.7 fb⁻¹

main systematic uncertainty from background size and shape

Asymmetry with the full dataset

CDF Run II Preliminary L = 8.7 fb⁻¹

top pair produced with definite spin state depending on production mechanism i.e. spin 1 (qqbar annihilation) or spin 0 (gluon fusion)

1

top decays before hadronization

- spin information passed to decay product
- spin correlation measured from decay product angular distribution

0

0.5

cosθ₁

consistent with SM expectation

D0

D0

R

Matrix element method

define
$$P(x, H) \sim \int d^6 \sigma(y, H) W(x, y) f_{PDF}(q_1) f_{PDF}(q_2) dq_1 dq_2$$

differential detector Parton Density
Function
with correlation H=1 and no correlation H=0 hypotheses
use discrimination variable $R = \frac{P(x, H=1)}{P(x, H=1) + P(x, H=0)}$
D0 5.4 fb⁻¹ dilepton
 $C_{\text{beam}} = 0.57 \pm 0.31 \text{ (stat+syst)}$
D0 5.3 fb⁻¹ lepton+jets
 $C_{\text{beam}} = 0.89 \pm 0.33 \text{ (stat+syst)}$
 $C_{\text{beam}} = 0.66 \pm 0.23 \text{ (stat+syst)}$
 $C > 0.26 @ 95 \% \text{ CL}$
 $C = 0 \text{ excluded at } 3.1 \sigma$

1st evidence of non zero spin correlation !

Ratio of branching fractions R

in the SM the ratio $R = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$ is constrained by CKM unitarity to be $R=1 \rightarrow R < 1$ could indicate new physics

measure R simultaneously with the ttbar cross section dropping the assumption R=1

 CDF 7.5 fb⁻¹ (l+jets)
 D0 5.4 fb⁻¹ (dil

 $\sigma_{t\bar{t}} = 7.4 \pm 1.1$ pb
 $\sigma_{t\bar{t}} = 7.74 \pm 1.1$
 $R = 0.91 \pm 0.09$ $R = 0.90 \pm 1.000$
 $|V_{tb}| = 0.95 \pm 0.05$ $|V_{tb}| = 0.95 \pm 1.000$

 stat +syst uncertainties
 $|V_{tb}| > 0.880$

D0 5.4 fb⁻¹ (dilepton & l+jets) $\sigma_{t\bar{t}} = 7.74^{+0.67}_{-0.57}$ pb $R = 0.90 \pm 0.04$ $|V_{tb}| = 0.95 \pm 0.02$ $|V_{tb}| > 0.88$ @ 99.7% CL

EW single top production

- observed by CDF and D0 in March 2009
- direct access to the Wtb vertex
- direct measurement of Vtb $\sigma \sim |V_{tb}|^2$
- final state within large background with uncertainties larger than signal

- multivariate techniques mandatory (BDT, BNN, NEAT)

Tevatron combination (up to 3.2 fb⁻¹) $\sigma = 2.76^{+0.58}_{-0.47}$ (stat+syst) pb $|V_{tb}| = 0.88 \pm 0.07$ (stat+syst) $|V_{tb}| > 0.77$ @ 95% CL for $m_t = 170$ GeV

PRL 103,092001 (2009), PRL 103, 092002 (2009)

single top : s+t channel cross section

D0 5.4 fb⁻¹ **update (l+jets)**_{10⁴}

discriminating variables combined into MVAs :

- Boosted Decision Tree (BDT)
- Bayesian Neural Net (BNN)
- Neuroevolution of Augmented Topologies (NEAT)

Correlation ~ 70 %

2nd BNN used to construct a combined discriminant for each channel

$$\sigma_{s+t} = 3.43^{+0.73}_{-0.74}$$
 pb
 $\sigma_t = 2.86^{+0.69}_{-0.63}$ pb
 $\sigma_s = 0.68^{+0.38}_{-0.35}$ pb

PRD 84, 112001 (2011)

direct |V_{tb}| measurement

- can measure $|V_{tb}|$ assuming V-A coupling but without assuming 3 generations or unitarity of CKM matrix and using

$$\left|V_{tb}\right|_{\text{measured}}^{2} = \frac{\sigma_{s+t}^{\text{measured}}}{\sigma_{s+t}^{\text{SM}}} \left|V_{tb}\right|_{\text{SM}}^{2}$$

- maintain the possibility for an anomalous strength of the left-handed Wtb coupling f_1^L

$$\left|V_{tb} f_{1}^{L}\right| = 1.02^{+0.10}_{-0.11}$$

- assuming $f_1^L = 1$ and restricting to [0,1]

PRD 84, 112001 (2011)

Single top CDF 7.5 fb^{-1} update (1 + jets): cross sections and V_{tb}

- use NN with same input variables as the observation analysis
- use NLO POWHEG for the MC single top signal samples (s-, t-, and Wt channels)

 $\sigma_{\text{single top}} = 3.04^{+0.57}_{-0.53} \text{ pb}$

- extract bounds on $|V_{tb}|$ using again :

$$|V_{tb}|^{2}_{\text{measured}} = \frac{\sigma_{s+t}^{\text{measured}}}{\sigma_{s+t}^{\text{SM}}} |V_{tb}|^{2}_{\text{SM}}$$
$$|V_{tb}| > 0.78 \quad \text{at 95 \% CL}$$
$$|V_{tb}| = 0.92^{+0.10}_{-0.08} \text{ (stat+syst)} \pm 0.05 \text{ (theory)}$$

single top s- and t- channel measurement

s and t channel sensitive to different BSM physics

- construct a 2D posterior probability density function for t- versus s- channel cross section
- extract t-channel cross section from 1D posterior by integrating over s-channel (x-axis)

$$\sigma_{\text{t-channel}} = 2.90 \pm 0.59 \text{ pb}$$

 $\sigma_{\text{s-channel}} = 0.98 \pm 0.63 \text{ pb}$

most precise measurement in t-channel $>5\sigma$ significance

PLB 705, 313 (2011)

PRD 84, 072004 (2011)

Search for resonant ttbar production

PRD 85, 051101 (2012)

Search for top+jet resonances in ttbar + jet

search for a heavy particle X produced in association with a t quark: $p \bar{p} \rightarrow X t \rightarrow \bar{t} q t$ leading to a resonance in the \bar{t} + jet system of $\bar{t} t$ + jet events

select events in lepton+jets with at least 5 jets and 1 btag

- Tevatron provides precision measurements for top pair production cross section

in most cases the measurements are now limited by systematics uncertainties

- Forward-backward asymmetry of top events keeps indicating a discrepancy with current NLO QCD prediction
- Tevatron provides 1st evidence for non zero spin correlations
- Electroweak production of single top has been observed new results on cross scetion measurements with precision < 20 % observation of t-channel production measurements and limits on V

- no evidence for resonant ttbar production

BACKUP

14 nations60 institutions~500 physicists

19 nations79 institutions~500 physicists

- silicon detector
- COT: drift chamber
- solenoid
- calorimeters central, wall, plug
- muon scintillator + chamber

- 8 layers silicon (SMT)
- 16 layers scintillating fibers
- 2T solenoid
- calorimeter: central+endcap
- 1.8 toroid
- 3 layers muon scintillators
 - + drift tubes

Multivariate analyses

Combine different kinematic variables with some discrimination power into one variable with larger discrimination

Multivariate analyses

Boosted decision tree (BDT)

- apply sequential cuts keeping failing events
- performance is boosted by averaging multiple tress produced by enhancing misclassified events

Bayesian Neural Network (BNN)

- Bayesian NN averaged over many network improving the performance

Neuro Evolution of Augmenting Topologies (NEAT)

- Genetic algorithms evolve a population of NN
- Topology of the NN is also part of the training

BNN Combination

- different discriminator are combined into one

Bayesian statistical analysis

EW single top production

TABLE II. Expected and observed cross sections in pb for tb, tqb, and tb + tqb production. All results assume a top quark mass of 172.5 GeV.

Discriminant	Expected	d Observed	
	tb production	d.e	
BNN	$1.08\substack{+0.52\\-0.50}$	$0.72^{+0.44}_{-0.43}$	
BDT	$1.07\substack{+0.47 \\ -0.43}$	$0.68\substack{+0.41 \\ -0.39}$	
NEAT	$1.06\substack{+0.54\\-0.50}$	$0.17\substack{+0.41 \\ -0.17}$	
B_{tb}	$1.12\substack{+0.45\\-0.43}$	$0.68\substack{+0.38 \\ -0.35}$	
	tqb production		
BNN	$2.49^{+0.76}_{-0.67}$	$2.92^{+0.87}_{-0.73}$	
BDT	$2.40^{+0.71}_{-0.66}$	$3.03^{+0.78}_{-0.66}$	
NEAT	$2.36\substack{+0.80\\-0.77}$	$2.75^{+0.87}_{-0.75}$	
B_{tqb}	$2.43^{+0.67}_{-0.61}$	$2.86\substack{+0.69\\-0.63}$	
	tb + tqb production		
BNN	$3.46^{+0.84}_{-0.78}$	$3.11_{-0.71}^{+0.77}$	
BDT	$3.41\substack{+0.82\\-0.74}$	$3.01^{+0.80}_{-0.75}$	
NEAT	$3.33^{+0.94}_{-0.80}$	$3.59^{+0.96}_{-0.80}$	
B_{tb+tqb}	$3.49\substack{+0.77\\-0.71}$	$3.43\substack{+0.73 \\ -0.74}$	

TABLE III. Dependence on m_t of the measured cross sections in pb for tb, tqb, and tb + tqb production, using the combined discriminants for the assumed top quark masses. The predicted cross sections [2] in pb are also included in the table and labeled "SM."

m _t	170 GeV	172.5 GeV	175 GeV	
tb	$1.20\substack{+0.62\\-0.56}$	$0.68\substack{+0.38\\-0.35}$	$0.53^{+0.36}_{-0.34}$	
SM	$1.12\substack{+0.04\\-0.04}$	$1.04\substack{+0.04\\-0.04}$	$0.98\substack{+0.04\\-0.04}$	
tqb	$2.65\substack{+0.65 \\ -0.59}$	$2.86\substack{+0.69\\-0.63}$	$2.45^{+0.60}_{-0.57}$	
SM	$2.34\substack{+0.12\\-0.12}$	$2.26\substack{+0.12\\-0.12}$	$2.16\substack{+0.12 \\ -0.12}$	
tb + tqb	$3.70\substack{+0.78 \\ -0.80}$	$3.43^{+0.73}_{-0.74}$	$2.56^{+0.69}_{-0.61}$	
SM	$3.46\substack{+0.16 \\ -0.16}$	$3.30\substack{+0.16 \\ -0.16}$	$3.14\substack{+0.16 \\ -0.16}$	

From D0 publication : PRD 84, 112001 (2011)

EW single top production

