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Outline 
Lecture 1:  Introduction and basic formalism 

 Probability 
 Parameter estimation 
 Statistical tests 

Lecture 2:  Statistics for making a discovery 
 Multivariate methods 
 Discovery significance and sensitivity 
 Systematic uncertainties 
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Event selection as a statistical test 
For each event we measure a set of numbers: 

x1 = jet pT  
x2 = missing energy 
x3 = particle i.d. measure, ...  

follows some n-dimensional joint probability density, which  
depends on the type of event produced, i.e., was it 

E.g. hypotheses H0, H1, ...  
Often simply “signal”, 
 “background” 
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Finding an optimal decision boundary 
In particle physics usually start 
by making simple “cuts”: 

   xi < ci 
   xj  < cj 

Maybe later try some other type of decision boundary: 
H0 H0 

H0 

H1 

H1 
H1 
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Neural networks in particle physics 
For many years, the only "advanced" classifier used in particle physics. 

Usually use single hidden layer,  
logistic sigmoid activation function: 

s(u) = (1 + e-u) -1 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Overtraining  

training sample independent test sample 

If decision boundary is too flexible it will conform too closely 
to the training points  → overtraining. 
Monitor by applying classifier to independent test sample. 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π (H) is the prior probability for H. 

Express level of agreement between data and H with p-value: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Searching for presence of signal events 
For each event we measure two variables, x = (x1, x2). 

Suppose that for background events (hypothesis H0),  

and for a certain signal model (hypothesis H1) they follow 

where x1, x2  ≥ 0 and C is a normalization constant. 
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Likelihood ratio as test statistic 
In a real-world problem we usually wouldn’t have the pdfs  
f(x|H0) and f(x|H1), so we wouldn’t be able to evaluate the 
likelihood ratio  

for a given observed x, hence 
 the need for multivariate  
methods to approximate this  
with some other function. 

But in this example we can  
find contours of constant  
likelihood ratio such as: 



G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2 30 

Event selection using the LR 
Using Monte Carlo, we can find the distribution of the likelihood 
ratio or equivalently of 

signal (H1) 

background 
 (H0) 

From the Neyman-Pearson lemma 
we know that by cutting on this 
variable we would select a signal 
sample with the highest signal 
efficiency (test power) for a given 
background efficiency. 
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Search for the signal process 
But what if the signal process is not known to exist and we want 
to search for it.   The relevant hypotheses are therefore 

 H0:  all events are of the background type 
 H1:  the events are a mixture of signal and background 

Rejecting H0 with Z > 5 constitutes “discovering” new physics. 

Suppose that for a given integrated luminosity, the expected number 
of signal events is s, and for background b. 

The observed number of events n will follow a Poisson distribution: 
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Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 
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Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 

Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 

Suppose in real experiment 
Q is observed here. 
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Systematic uncertainties 
Up to now we assumed all parameters were known exactly. 

 In practice they have some (systematic) uncertainty. 

Suppose e.g. uncertainty in expected number of background events 
b is characterized by a (Bayesian) pdf π(b). 

Maybe take a Gaussian, i.e., 

where b0 is the nominal (measured) value and σb is the estimated 
uncertainty. 

 In fact for many systematics a Gaussian pdf is hard to  
 defend – more on this later. 
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Distribution of Q with systematics 
To get the desired p-values we need the pdf f (Q), but 
this depends on b, which we don’t know exactly.   

But we can obtain the Bayesian model average: 

With Monte Carlo, sample b from π(b), then use this to generate  
Q from f (Q|b), i.e., a new value of b is used to generate the data 
for every simulation of the experiment. 

This broadens the distributions of Q and thus increases the  
p-value (decreases significance Z) for a given Qobs. 
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Distribution of Q with systematics (2) 
For s = 20, b0 = 100, σb = 10 this gives 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 
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Example:  ALEPH Higgs search  
p-value  (1 – CLb) of background only hypothesis versus tested 
Higgs mass measured by ALEPH Experiment  

Possible signal? 

Phys.Lett.B565:61-75,2003.  
hep-ex/0306033 
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Example:  LEP Higgs search  
Not seen by the other LEP experiments.  Combined analysis gives  
p-value of background-only hypothesis of 0.09 for mH = 115 GeV. 

Phys.Lett.B565:61-75,2003.  
hep-ex/0306033 
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Using the likelihood ratio L(s)/L(s) ˆ 

Instead of the likelihood ratio Ls+b/Lb, suppose we use as a test 
statistic  

Intuitively this is a good measure of the level of agreement  
between the data and the hypothesized value of s. 

 low λ:  poor agreement 
 high λ : good agreement 
 0 ≤ λ ≤ 1 

maximizes L(s) 
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L(s)/L(s) for counting experiment ˆ 
Consider an experiment where we only count n events with 
n ~ Poisson(s + b).  Then                 . 

To establish discovery of signal we test the hypothesis s = 0 using 

whereas previously we had used 

which is monotonic in n and thus equivalent to using  n as 
the test statistic. 
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L(s)/L(s) for counting experiment (2) ˆ 
But if we only consider the possibility of signal being present 
when n > b, then in this range λ(0) is also monotonic in n, 
so both likelihood ratios lead to the same test. 

b 
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L(s)/L(s) for general experiment ˆ 
If we do not simply count events but also measure for each some  
set of numbers, then the two likelihood ratios do not necessarily  
give equivalent tests, but in practice will be very close. 

λ(s) has the important advantage that for a sufficiently large event 
sample, its distribution approaches a well defined form (Wilks’ 
Theorem). 

 In practice the approach to the asymptotic form is rapid and  
 one obtains a good approximation even for relatively small  
 data samples (but need to check with MC). 

This remains true even when we have adjustable nuisance  
parameters in the problem, i.e., parameters that are needed for 
a correct description of the data but are otherwise not of 
interest (key to dealing with systematic uncertainties). 
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The profile likelihood ratio 
If the model contains nuisance parameters θ, can base significance 
test on profile likelihood ratio: 
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maximizes L for 
specified µ	


maximize L	


In large-sample limit, distribution of -2lnλ(µ) related to 
chi-square pdf; see, e.g., Cowan, Cranmer, Gross, Vitells,  
EPJC 71 (2011) 1-19; arXiv:1007.1727,  
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 

1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 

2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  



G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2 48 

Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b,  

This reduces to s/√b for s << b. 
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Lecture 2  Summary 
Neyman-Pearson lemma:  likelihood ratio is optimal test statistic. 
But usually not directly usable; try e.g., 

 Fisher discriminant 
 Neural networks 
 Boosted Decision Trees 
 Support Vector Machines, ... 

Significance tests 
 p-value of H is probability to see data with equal or worse 
 compatibility with H (not same as P(H)). 
 “Discovery” = p-value of background-only hypothesis v. low 

Systematic uncertainties 
 Quantified via nuisance parameters; methods include 
 Bayesian averaging, profile likelihood 
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Extra slides 
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