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Event selection as a statistical test

For each event we measure a set of numbers: x (xl, n)
X T Ietpy
X, = missing energy

x, = particle 1.d. measure, ...

¥ follows some n-dimensional joint probability density, which

depends on the type of event produced, i.e., was it pp — tt, pp — gg....
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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:

xl.<cl.
x. <Cc.
J J
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Test statistics

The decision boundary is a surface in the n-dimensional space of
input variables, e.g.. y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the
maximum possible separation between the event types:

2

The decision boundary y cut
is now effectively a single b5 L AccePtHy e reect By
cut on y(x), dividing
: 1+ .
x-space into two (VIH ) | |
regions: fyiH, A _ f(YHY
& 05 r &
RO (accept HO)
. 0 1 1>/“*| ' =
R1 (reject Ho) 0 1 2 3 4 .
yix)
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given
significance level), choose the acceptance region for signal such that
.
p(X[s)
— >
p(X|b)

where ¢ is a constant that determines the signal efficiency.

C

Equivalently, the optimal discriminating function is given by the

likelihood ratio: y(i): P(}|S)
p(X[b)

N.B. any monotonic function of this is just as good.
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Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs

p(xls), p(xIb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
o . - - [ — \ . . .
generate Y~ p(X|s) - X ...,XNs / events of known type

generate X~ p(X|b) > )(1 ...,X-‘N,
’ iVp

Naive try: enter each (s,b) event into an n-dimensional histogram,

use e.g. M bins for each of the n dimensions, total of M" cells.

n is potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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Some “‘standard” multivariate methods

Place cuts on individual variables

Simple, intuitive, in general not optimal

Linear discriminant (e.g. Fisher)
Simple, optimal if the event types are Gaussian distributed with
equal covariance, otherwise not optimal.

Probability Density Estimation based methods
Try to estimate p(xls), p(xIb) then use v (¥)=p(x|s)/p(x|b).

In principle best, difficult to estimate p(x) for high dimension.

Neural networks
Can produce arbitrary decision boundary (in principle optimal),
but can be difficult to train, result non-intuitive.
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G. Cowan

I inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transtformation of inputs

We can try to find a transformation, X ,..., X, = (pl(i ), . (pm(_)Z)
so that the transformed ““feature space™ variables can be separated
better by a linear boundary:
| | Here, guess fixed
_ -1 / 0 _
p,=tan " (x,/x,) __— basis functions
—— (no free parameters)
[ 2
D=\ XX,
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Neural networks 1n particle physics

For many years, the only "advanced" classifier used in particle physics.

hz(f) — (in —|— Z wzja:]) ,

=1

t(¥) = s (ao + ﬁ: aihi(f)) :

=1

hidden layer

1

s(t)

08

Usually use single hidden layer,
logistic sigmoid activation function:

s(u)y=(1+e#)1

06

04

0.2

0
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Signal: ete” —» W*W-
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Neural network example from LEP II

Q 0.5 1
log(Ys.)

0,5‘ 1
log(Mc,)

| I

0 0.5 1
Log{Aplonority)

0.2 0.2
0.15 [ 008
o1 | o1 |
0,05 | 0.08 |
° i o R 0 & AU
Q 0.5 1 0 0.5 1
10G(Yzs) LOG(Y sasenr)
g2 | 02 [
(UL 0.1 -
G e p
o 0.5 1 0 0.5 1
Sphericity Planarity
0.z 0.2
0.15 015 |
0.1 6.1 [
0.08 0.05 [
] 0
a 0.5 1 o 0.5 1
Thrust Min(Ex)

(often 4 well separated hadron jets)
Background: e*e™ — qqgg (4 less well separated hadron jets)

< 1nput variables based on jet
structure, event shape, ...

none by itself gives much separation.

Neural network output:

0t -
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04 |

03 |

0z | J
ot [ i :
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Neuron Quiput

(Garrido, Juste and Martinez, ALEPH 96-144)
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Overtraining

If decision boundary 1s too flexible it will conform too closely
to the training points — overtraining.

Monitor by applying classifier to independent test sample.

training sample independent test sample
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam  Electron candidate
fIJZ%y ring, short tr_::_'!gk

of neutrinos and viewed by 1520 v~ €&

photomultiplier tubes: w

MiniBooNE Detector

Muon candidate
sharp ring, filled in

Vs, =

W
ﬁ Pion candidate
‘ _two "e-like" rings
Vll r.-ﬁ"“ - s ‘L
: . =
Search for v, tov, oscillations —y |
required particle 1.d. using Ll ’

information from the PMTs. H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the input variables, find the one for which with a
single cut gives best improvement in signal purity:

signal !
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either

signal/background.

Iterate until stop criterion reached

based on e.g. purity or minimum S B
number of events in a node. 1l 29

The set of cuts defines the decision Example by MiniBooNE experiment,
boundary. B. Roe et al., NIM 543 (2005) 577

G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2



Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and c, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A=WoGo— WGy = WeGe  where,e.g, Wa=3

Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p,1 —p)
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that is more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X .o X event data vectors (each x multivariate)

I N
Yeen ¥y, true class labels, +1 for signal, —1 for background

Wy W event weights

Now define a rule to create from this an ensemble of training samples
I.T, ... derive a classifier from each and average them.
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AdaBoost

A successtul boosting algorithm is AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

X.....X ~ event data vectors

_.\"‘19"

w o w P event weights

.y, lrue class labels (+1 or -1)

N

with the weights equal and normalized such that Z W(;-l) =1.
i=1

Train the classifier f (x) (e.g. a decision tree) using the weights w'

SO as to minimize the classification error rate,
N
_ (1)
e,=2 W I(y, f1(x,)<0),
i=1

where [(X) =1 1f X 1s true and 1s zero otherwise.
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

1—¢,

o, =1In
k
<k

Define the training sample for step k+1 from that of & by updating
the event weights according to

e_akfk(xi)yilz

k+1 k
)= 0
/ /Z k- ¥~ Normalize so that
[ =eventindex k= training sample index (k+1)_
g samp Z w, =1
1
K
[terate K times, final classifier is y(X,)ZZ o fro(x,T,)
k=1
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From MiniBooNE

example:

Performance stable
after a few hundred

trees.

G. Cowan

Monitoring overtraining

Training MC Samples .VS. Testing MC Samples
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Boosting Outputs

Boosting Outputs
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Boosted decision tree summary

Advantage of boosted decision tree is it can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively ignored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

[f a tree has only a few leaves it is easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost....)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(Z|H) for a set of

observations © = (z1,...,Tn) .
We observe a single point in this space: Zgps

What can we say about the validity of H in light of the data?

Decide what part of the T Lobs .
data space represents less 4 \ v mor§bl
compatibility with A than / comp atible
does the point ZTops - 7 less with
(Not unique!) compatible
with H
» €T
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p-values

Express level of agreement between data and H with p-value:

p = probability, under assumption of H, to observe data with
equal or lesser compatibility with H relative to the data we got.

A This 1s not the probability that A 1s true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). In Bayesian statistics we do;
use Bayes’ theorem to obtain

P(&|H)w(H)

PUH|E) = [ P(Z|H)=(H) dH

where st (H) 1s the prior probability for H.

For now stick with the frequentist approach;
result 1s p-value, regrettably easy to misinterpret as P(H).
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p-value example: testing whether a coin 1s ‘fair’

Probability to observe n heads in N coin tosses 1s binomial:

P(n;p,N) = n!(NNi n)!p"(l —-p)N "

Hypothesis A: the coin 1s fair (p = 0.5).

Suppose we toss the coin N =20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with
Hrelativeton=171s: n=17,18, 19, 20,0, 1, 2, 3. Adding
up the probabilities for these values gives:

P(n=0,1,2,3,17,18,19, or 20) = 0.0026 .

i.e. p = 0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.

G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

. ]. —£L'2/2
p=/ ——¢€ diE:l—q’(Z) 1 - TMath: :Freq

Z =& 11 -p) TMath: :NormQuantile
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The significance of an observed signal

Suppose we observe n events; these can consist of:

n, events from known processes (background)
n, events from a new process (signal)

If ng, n, are Poisson r.v.s with means s, b, then n = n, + n,
1s also Poisson, mean = s + b:

(s +|b) e—(s—l—b)

n.

P(n;s,b) =

Suppose b = 0.5, and we observe n .= 5. Should we claim
evidence for a new discovery?

Give p-value for hypothesis s = 0:

p-value = P(n>5;b=0.5,s =0)

1.7 x 107% # P(s=0)!
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Searching for presence of signal events

For each event we measure two variables, x = (x,, x,).

Suppose that for background events (hypothesis H),

1 1
f(x|Ho) = —e "1/81 —em72/82
1 9

and for a certain signal model (hypothesis /) they follow

1 e N2 /92 1 N2 /02
f(x|H)) =C o~ (w1—=p1)7 /207 o~ (r2—p2)*/203
V 2O V 2T O9

where x,, x, > 0 and C 1s a normalization constant.
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Likelithood ratio as test statistic

In a real-world problem we usually wouldn’t have the pdfs
f(x|H,) and f(x|H,), so we wouldn’t be able to evaluate the
likelihood ratio .

Hx) = f(x|Hy)

~ f(x|Ho)

for a given observed x, hence X' °[

the need for multivariate o
methods to approximate this ol
with some other function. ‘ ‘

But in this example we can
find contours of constant
likelihood ratio such as:
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Event selection using the LR

Using Monte Carlo, we can find the distribution of the likelihood
ratio or equivalently of

¢

_ 2 _ 2 0, 9,
T1 — [L- To — [ 21 21
Q:(H ,Ul> _|_(12 ,112) _L—L:—ant(x)—l—(f

o P & &
G 0.5 C
I From the Neyman-Pearson lemma
osr  signal (H,) we know that by cutting on this
oal / variable we would select a signal
: background sample with the highest signal
°20 (H,) efficiency (test power) for a given
ol / background efficiency.
S 10

q=-2In t(xf x2)
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Search for the signal process

But what if the signal process 1s not known to exist and we want
to search for it. The relevant hypotheses are therefore

H,: all events are of the background type
H,: the events are a mixture of signal and background

Rejecting H, with Z > 5 constitutes “discovering” new physics.

Suppose that for a given integrated luminosity, the expected number
of signal events 1s s, and for background b.

The observed number of events n will follow a Poisson distribution:

pn - |
P(N’b) — —E'Z_b P(n|5 e b) — (S T b) 6‘3_(3—‘[_1))

n! n!

G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2 31



Likelihoods for full experiment

We observe n events, and thus measure » instances of x = (x,, x,).

The likelihood function for the entire experiment assuming
the background-only hypothesis (H,) 1s

bn T

— _be x;|b)

and for the “signal plus background” hypothesis (/) it 1s

1.

S -+ b (s
Ls—i—b = ( ) (s45) H Xz| Wl)f(x'i‘b))

where 7, and m, are the (prior) probablhtles for an event to
be signal or background, respectively.
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Likelihood ratio for full experiment

We can define a test statistic O monotonic in the likelihood ratio as

Ls—f—b B S (X s
)= —2ln —_"+Zhl(1+bf(xz“)))

To compute p-values for the b and s+b hypotheses given an
observed value of O we need the distributions f(Q|b) and f(O|s+b).

Note that the term —s 1n front 1s a constant and can be dropped.

The rest 1s a sum of contributions for each event, and each term
in the sum has the same distribution.

Can exploit this to relate distribution of O to that of single

event terms using (Fast) Fourier Transforms (Hu and Nielsen,
physics/9906010).
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Take e.g. b =100, s = 20.

G. Cowan

Distribution of 0

Suppose 1n real experiment

/ Q 1s observed here.

@ 0.08 /
_ f(Obb)
f(QIs+b) | 7
0. —\
0.02 ——
(-)8;) - -GIO l -40 l -210 — 0
/ \ Q
p-value of b only p-value of s+b
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Systematic uncertainties

Up to now we assumed all parameters were known exactly.
In practice they have some (systematic) uncertainty.

Suppose e.g. uncertainty in expected number of background events
b 1s characterized by a (Bayesian) pdf s(b).

Maybe take a Gaussian, i.e.,

7 (b) = — e (0=b0)?/20]

m :
2TO},

where b, 1s the nominal (measured) value and oy 1s the estimated
uncertainty.

In fact for many systematics a Gaussian pdf 1s hard to
defend — more on this later.
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Distribution of O with systematics

To get the desired p-values we need the pdf / (Q), but
this depends on b, which we don’t know exactly.

But we can obtain the Bayesian model average:

1(Q) = [ F@ym()a

With Monte Carlo, sample b from s(b), then use this to generate
O from f (Q|b), 1.e., a new value of b 1s used to generate the data
for every simulation of the experiment.

This broadens the distributions of O and thus increases the

p-value (decreases significance Z) for a given Q, ..

G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2
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Distribution of O with systematics (2)

For s =20, b, = 100, o, = 10 this gives

@0.08 I
0.06 - Qiobs _ f(Olb)

f(Qlstb) | -

04 —
I

0.02 _—

0—80 ll lJ—éO -40 -20 0

/ \ @

p-value of b only p-value of s+b
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Example: ALEPH Higgs search

p-value (1 —CL,) of background only hypothesis versus tested
Higgs mass measured by ALEPH Experiment

S |-ALEPH @)
~
NI N
1 \|
10 I"v.
t=—=20
, Possible signal?
10 3'[ n /
'“-'. 3a
-3 :
10 6085 90 95 100 105 110 115 120 Phys.Lett.B565:61-75,2003.
mH(GeV/cz) hep-ex/0306033
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Example: LEP Higgs search

Not seen by the other LEP experiments. Combined analysis gives
p-value of background-only hypothesis of 0.09 for m; = 115 GeV.

J-: JT.2D
Lnr
S
y—
.
2\ A
. i
10 \\\ e \v/\"
\\ //[ ]
\) 20
\ !
W/
2
10 - ——_ Qbhserved
Exbected-Jor baciiarowmd—f-
36
Phys.Lett.B565:61-75,2003.
-3 ;
10 80 85 90 95 100 105 110 115 120 hep-eX/O306033

m(GeV/ cz)
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Using the likelihood ratio L(s)/L(s)

Instead of the likelihood ratio L ,,/L,, suppose we use as a test
statistic

maximizes L(s)
Intuitively this 1s a good measure of the level of agreement
between the data and the hypothesized value of s.

low A: poor agreement
high A : good agreement
0<A<I

G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 2
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L(s)/L(s) for counting experiment

Consider an experiment where we only count 7 events with
n ~ Poisson(s + b). Thens=n—10,

To establish discovery of signal we test the hypothesis s = 0 using
InA0) =nln(b) —b—nlnn+n

whereas previously we had used

L
In L:b =nln <1 + %) — 5

which 1s monotonic 1n # and thus equivalent to using 7 as
the test statistic.
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L(s)/L(s) for counting experiment (2)

But if we only consider the possibility of signal being present
when n > b, then in this range A(0) 1s also monotonic in 7,
so both likelihood ratios lead to the same test.

. ln(l‘,.b“‘b]

S0F <« Ink(0)

s=8b=16

0 20 40 60 80 100
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L(s)/L(s) for general experiment

If we do not simply count events but also measure for each some
set of numbers, then the two likelihood ratios do not necessarily
give equivalent tests, but 1n practice will be very close.

A(s) has the important advantage that for a sufficiently large event
sample, its distribution approaches a well defined form (Wilks’
Theorem).

In practice the approach to the asymptotic form 1s rapid and
one obtains a good approximation even for relatively small
data samples (but need to check with MC).

This remains true even when we have adjustable nuisance
parameters 1n the problem, 1.e., parameters that are needed for
a correct description of the data but are otherwise not of
interest (key to dealing with systematic uncertainties).
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The profile likelihood ratio

If the model contains nuisance parameters €, can base significance
test on profile likelihood ratio:

/ maximizes L for
specified u

K maximize L

In large-sample limit, distribution of —2InA(u) related to
chi-square pdf; see, e.g., Cowan, Cranmer, Gross, Vitells,
EPJC 71 (2011) 1-19; arXiv:1007.1727,
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Discovery significance for n ~ Poisson(s + b)

Consider again the case where we observe n events ,
model as following Poisson distribution with mean s + b
(assume b 1s known).

1) For an observed n, what 1s the significance Z, with which
we would reject the s = 0 hypothesis?

2) What 1s the expected (or more precisely, median ) Z, if
the true value of the signal rate 1s s?
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Gaussian approximation for Poisson significance

For large s + b, n — x ~ Gaussian(u,0) , u=s + b, o = (s + b).

For observed value x_. , p-value of s =0 1s Prob(x > x_, . | s = 0),:

obs’ obs

170)3_[)
=1 (")

Significance for rejecting s = 0 is therefore

— Tobs — b
Zo=d l(1 —po) = 7
h

Expected (median) significance assuming signal rate s 1s

S

\;@
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Better approximation for Poisson significance

Likelihood function for parameter s 1s

L(S) _ (S +' ) 6—(5—!—())
1.

or equivalently the log-likelihood i1s

InL(s)=nln(s+b) — (s +b) — Inn!

Find the maximum by setting di)n L_ 0
JS
gives the estimator for s: s=n-—>
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Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 1s

qJo = —21In

L(0)
L(3)

= 2 (n. ln’—lj + b — n.) for n > b, 0 otherwise

For sufficiently large s + b, (use Wilks’ theorem),

Zy = \/qo \/ n 111 - —I— b — n) for n > b, 0 otherwise

To find median[Z|s+b], let n — s + b,

median[Zy|s + b] =~ \/2 s+ b)In(1 + s/b) — s)

This reduces to s/\b for s << b.

G. Cowan
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Lecture 2 Summary

Neyman-Pearson lemma: likelihood ratio 1s optimal test statistic.
But usually not directly usable; try e.g.,

Fisher discriminant

Neural networks

Boosted Decision Trees
Support Vector Machines, ...

Significance tests

p-value of H 1s probability to see data with equal or worse
compatibility with H (not same as P(H)).

“Discovery” = p-value of background-only hypothesis v. low

Systematic uncertainties

Quantified via nuisance parameters; methods include
Bayesian averaging, profile likelihood
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2" ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 20035, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confId=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006_Lectures.html
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, I. Narsky, physics/0507143

Further info from www. hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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