
Use of ROOT in Geant4

A.Dotti, SLAC
I. Hrivnacova, IPN Orsay

W. Pokorski, CERN

ROOT Users Workshop,
11 - 14 March 2013, Saas-Fee

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 2

Outline

● Analysis tools in Geant4
● Use of Root in Geant4 testing
● Experience with Root in multi-threading programs

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 3

Analysis Tools in Geant4

● AIDA based tools
● New Geant4 analysis tools
● ROOT

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 4

AIDA Based Tools

● Historically first analysis tools in Geant4 examples
● Based on AIDA = Abstract Interfaces for Data Analysis

● Since Geant4 3.0 release (December 2000)

● First provided within the Geant4 example extended/analysis/AnaEx01
(jas, Lab), then available as external tools

● The AIDA compliant tools (linked in the Geant4 Guide for Application
Developers):

– JAS, iAIDA, Open Scientist Lab, rAIDA

● Not all kept maintained, not all implement the AIDA interfaces completely

● Not always easy to be installed & used

– See Geant4 user forum, Analysis category

● Still supported with Geant4 9.6 (November 2012)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 5

New Analysis Tools

● New analysis category in Geant4 since Geant4 9.5 (December
2011)

● Based on g4tools from inlib/exlib developed by G. Barrand
(LAL):

● http://inexlib.lal.in2p3.fr/

● “Pure header code” - all code is inlined

● Can be installed on iOS, Android, UNIXes, Windows

● Provides code to write histograms and “flat ntuples” in several formats:
ROOT, XML AIDA format, CSV for ntuples. HBOOK

● Complete migration to g4tools in all Geant4 examples in the
development plan for 2013

http://inexlib.lal.in2p3.fr/

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 6

Analysis Category

/geant4/source/analysis

include
tools

 src test
Manager
classes
headers

tools tests
without use of
managers

Manager
classes
implementation

tools classes -
headers only

/geant4/examples/extended/common/analysis

include src
ExG4HBookAnalysisManager
class header

 ExG4HBookAnalysisManager
class implementation

● Provides “light” analysis tools
● Available directly with Geant4 installation
● No need to link a Geant4 application with an external analysis package

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 7

Analysis Managers

● Uniform interface to g4tools
● Hide the differences

according to a selected
technology (Root, XML,
HBOOK) from the user

● Higher level management
of g4tools objects (file,
histograms, ntuples)

● Memory management

● Access to histograms,
ntuple columns via
indexes

● Integration in the Geant4
framework

● Interactive commands,
units, (in)activation of
selected histograms

G4VAnalysis
Manager

G4CsvAnalysis
Manager

G4RootAnalysis
Manager

G4XmlAnalysis
Manager

EG4HbookAnalysis
Manager

Common base class:
Interfaces functions
non dependent
on technology
(void return type)

Manager classes:
Implement:
- base class
 interfaces
- specific access
 functions (with specific
 return type)
- Instance() - singleton
 access

Provided in examples,
Requires linking
with CERNLIB

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 8

Example

#ifndef B4Analysis_h
#define B4Analysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4hbook.hh"

#endif

B4Analysis.hh

B4RunAction.cc

#include "B4Analysis.hh"

void B4RunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();

 // Open an output file
 man->OpenFile("exampleB4");

 // Create histogram(s)
 man->CreateH1("0","Edep in absorber", 100, 0., 800*MeV);
 man->CreateH1("1","Edep in gap", 100, 0., 100*MeV);
}

void B4RunAction::EndOfRunAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->Write();
 man->CloseFile();
}

B4EventAction.cc

#include "B4Analysis.hh"

void N4EventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillH1(0, fEnergyAbs);
 man->FillH1(1, fEnergyGap);
}

Selection of the output format
at a single place

Histogram IDs are attributed
automatically

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 9

Example (2)

/analysis/setFileName gammaSpectrum
/analysis/h1/set 3 200 0.01 10 MeV #gamma: energy at vertex
/analysis/h1/set 5 200 0.01 10 MeV log10 #gamma: energy at vertex (log10)
/analysis/h1/set 20 200 0 6 MeV #gamma: energy at exit
/analysis/h1/set 40 200 0 6 MeV #gamma: energy at back

gammaSpectrum.mac in TestEm5

● A set of Geant4 commands which can be used to create

histograms or set their properties dynamically
● Most of commands were defined according to manager classes defined

specifically in each example

● The examples specific manager classes could be then removed or
reduced significantly

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 10

Examples With ROOT
● The Geant4 applications with use of ROOT classes are

demonstrated in extended examples:
● analysis/AnaEx02 – demonstration of use of Root histograms and

ntuples

– AnaEx01 – same with g4tools; AnaEx03 – same with AIDA

– http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_do
c/html/Examples_analysis.html (link)

● persistency/P01, P02
– Root I/O examples for storing and retrieving calorimeter hits (P01) and

geometry objects (P02)
– Storing objects in a file using the 'reflection' technique for persistency

provided by the Reflex tool
– The generation of the Reflex dictionary fails for Geant4 geometry classes

using c-array with dynamic size declared via a variable of size_t type (as
Reflex requires int) and therefore saving the Geant4 geometry with ROOT
I/O is currently not possible

– Reviewing these examples with changes for Geant4 MT

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_analysis.html

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 11

Use of Root in Geant4 testing

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 12

Simplified Calorimeter
Application

● SimplifiedCalorimeter application:
● Simplified versions of HEP calorimeters implemented with Geant4

● All LHC calorimeter materials and technologies

● The most important variables for calorimetric measurements (response,
resolution and shower shapes) are reconstructed and recorded for
analysis.

● This application is used to test and verify physics improvements and new
developments.

● Geant4 testing:
● A limited sample of about 10 millions events every month with each

internal Geant4 development tag; and a sample at least 10 times larger
for the June (beta) and the November (production) releases

● Scattered in about 2k - 10k jobs each producing 2 ROOT files

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 13

Use of ROOT
in Testing Suite

1) Application level: the application
produces histograms and trees that
are saved in ROOT files

2) Python (pyROOT) program:
performs merging and analysis of
the produced ROOT files and
saves the result in a MySQL DB

3) Web application (DRUPAL module
+ 2nd pyROOT program) to
produce plots comparing, for a
given quantity, different versions of
Geant4

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 14

Use of ROOT
in Testing Suite (2)

● Strength points:
● We are pretty satisfied with it and we never had big issues.

● Since our GRID system is python based, we appreciate the possibility to
integrate ROOT via pyROOT (any strengthen of python and ROOT
integration is welcome).

● Weak points:
● For the web-application part since we want to integrate with a

DRUPALweb-site prototype we need to use php, the integration with the
pyROOT script that reads the DB and produces TGraphs is a bit
cumbersome and complex.

● We may need to review this part and evaluate other histogramming
facilities that are more web-friendly. Any idea?

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 15

Experience with ROOT in
Multi-threading programs

● Simplified Calorimeter Application
● Geant4 VMC

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 16

Geant4 MT
● Geant4MT aims to reduce the memory footprint by sharing the

largest data structures in Geant4
● Key requirements for Geant4MT

● Bit-level compatibility of results with the sequential version - given the
same starting state of a pseudo Random Number Generator (pRNG) for
each event

● Simple porting of applications

● Efficient use of multi-core and many-core hardware though good scaling
of performance.

● Geant4 MT prototype
● Public releases: 31 October 2011 based on 9.4.p01 and 13 August 2012

based on 9.5.p01

● To be provided with standard Geant4 distribution since the next
Geant4 release 10.0 (December 2013)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 17

Simplified Calorimeter MT
Application

● SimplifiedCalorimeter application uses ROOT for histograms,
N-tuples and linear algebra calculations (matrix diagonalization)

1) Start of Run:
● Book of histograms and TTrees (simple variables, C-array and

std::vector<double>)

2) Event Loop:
● TH::Fill(), TTree::Fill() ; creation, filling and manipulation of temporary

histograms

3) End of Run:
● Run summary and analysis,TFile::Write()

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 18

Simplified Calorimeter MT
Application (2)

● Multi-threaded application
● Each G4 thread simulates a subset of the total number of events.

● Each thread also performs analysis: event reconstruction, filling of
histograms and of two TTree

● Since the goal is to have a testing application to keep the code
as simple as possible each thread is independent (no shared
data):

● Each object has its own instances of each object (TH*, TTree, TFile)
needed for the analysis

● Each thread will write out a separate file (unique name contains thread-
id)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 19

Simplified Calorimeter MT
Application (3)

● Problems with concurrent access to (hidden) shared resources
make several steps non thread-safe:

● new TH* , new TTree(), TTree::SetBranchAddress() ,TFile::Write

● ROOT's TH3 replaced with g4tools::histo object that is thread safe

● For the TTree methods a ROOT's forum entry discusses a possible
work-around: to be tested

● TTree::Fill is thread-safe only if no std::vectors are used
● The work-around for the previous item may also solve this problem

● Added explicit lock via global mutex around critical sections of
the code (same method used as in a ROOT's tutorials of
TThread)

● A stand-alone (no Geant4) application that shows these
problems is available

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 20

Geant4 VMC MT

● An independent experience with Geant4 MT prototype and
ROOT IO also from tests with Geant4 VMC

● The ROOT IO – an integral part of the VMC application
● Geant4 VMC MT - the same approach as in Geant4 MT
● Singleton objects -> singletons per thread

● Both TGeant4 and UserMCApplication are instantiated per
each thread

● Added a new function in VMC (available since Root v5.34/00)
● TVirtualMC::InitMT(Int_t threadRank)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 21

Geant4 VMC MT
+ ROOT IO

● The same approach as in SimplifiedCalorimeter test:
● Each thread opens and writes its own ROOT file

● No need for final merge: user analysis can chain files

● Geant4 MT + ROOT IO:
● Example ParN02Root in Geant4 MT branch: adds Root IO to ParN02

● Added classes for ROOT IO management and locking: RootManagerMT,
RootMutex

● Use of TThread,

● Locking Root IO needed till first TTree::Fill in each thread

● Geant4 VMC MT + ROOT IO
● TMCRootManager* classes in E02 (but not specific to E02)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 22

Conclusions

● While the Geant4 framework itself is independent from any
choice of analysis tool, the Geant4 user developing his own
application can include ROOT analysis in several ways:

● Via g4tools, direct use of ROOT classes or via AIDA compliant tools

● All these options are demonstrated in the Geant4 examples.

● ROOT is successfully used in Geant4 testing
● As the test application analysis tools, via pyROOT programs and finally

also in a Web application

● The integration of ROOT in multi-threading applications is not
straightforward

● More effort required to solve remaining problems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

