Loop Quantum Gravity

Carlo Rovelli

String 08 Genève, August 2008

1

i. Loop Quantum Gravity

- The problem addressed
- Why loops?

ii. The theory

- Kinematics: spin networks and quanta of space

- Dynamics: spinfoams

iii. Physics

- Cosmology, black holes, singularities, low-energy limit

iv. Conclusion

- What has been achieved? What is missing?
- Future

i. Loop Quantum Gravity

- Develops since the late 80s.
- About 200 people, 30 research groups.
- Several books (CR:"Quantum Gravity"):

The problem addressed:

How to describe the fundamental degrees of freedom when there is no fixed background space

Carlo Rovelli Loop Quantum Gravity String08

-:

Hypotheses

- A radical conceptual change in our concept of space and time is required.
- The problem can be addressed already in the context of *current* physical theory: general relativity, coupled with the standard model.
- In gravity, (unrenormalizable) UV divergences are consequences of a perturbation expansion around a wrong vacuum. → Confirmed *a posteriori* in LQG.
- Guiding principle: a symmetry: Diffeomorphism invariance.

Consistency with quantum mechanics and (in the low-energy limit) General Relativity, and full diff-invariance are extremely strong constraints on the theory.

Main result

→ Definition of Diffeomorphisms invariant quantum field theory (for gauge fields plus fermions), in canonical and in covariant form.

A comment on general relativity

- GR is: i) A specific field theory for the gravitational field $\ g_{\mu
 u}(x):\ S[g]=\int d^4x \sqrt{-g}\ (R+\lambda)$
- ii) A general modification of our understanding of spacetime :

This modification is expressed by the invariance of the theory under the active action of the group of the *diffeomorphisms* on all the fields of the theory.

Carlo Rovelli Loop Quantum Gravity String08

.

Why Loops?

Carlo Rovelli Loop Quantum Gravity String08

6

"Old" nonperturbative quantum gravity

Canonical (Wheeler 64, DeWitt 63 ...)

- States: $\Psi(\mathbf{q})$. \mathbf{q} : 3d metric of a t=0 surface
- 3d diff: $\Psi(\mathbf{q}) = \Psi(\mathbf{q'})$ if there is a diff: $\mathbf{q} \rightarrow \mathbf{q'}$
- Dynamics: Wheler-DeWitt eq $\mathbf{H}\Psi(\mathbf{q}) = 0$.

difficulties:

- Which states $\Psi(\mathbf{q})$? Which scalar product $\langle \Psi, \Phi \rangle$?
- Operator **H** badly defined and UV divergent.
- No calculation possible.

Covariant (Misner 57, Hawking 79 ...)

•
$$Z=\int Dg\;e^{iS[g]}$$

difficulties:

- · Integral very badly defined
- Perturbative calculations bring UV divergences back.

Carlo Rovelli Loop Quantum Gravity String08

.

The gravitational field too, can be described as a gauge field, with a connection as main variable. (Cartan, Weyl, Swinger, Utyama, ..., Ashtekar)

Can we describe a quantum gauge-field-theory in terms of these lines?

Yes, on the lattice. (Wilson, Kogut, Susskind, ...)

Variable: Ue in the gauge group G

State: $\Psi(U_e)$ in $\mathcal{H} = L_2[G^{(number\ of\ edges)}, d\mu_{Haar}]$

Operators: Magnetic field $B_{Plaquette}$: $(U_1 U_2 U_3 U_4)$ Electric field: $E_e = -i \hbar \partial/\partial U_e$ (Left invariant vector

field)

Dynamics: $H = B^2 + E^2$

```
Loop state: \Psi_{\alpha}(U_e) = \text{Tr}(U_1 ... U_e ... U_N) = \langle U_e | \alpha \rangle
```

 \rightarrow $|\alpha\rangle$ is an eigenstate of E_1 with eigenvalue having support on α .

 $|\alpha\rangle$ is a "quantum excitation of a single Faraday line".

Carlo Rovelli Loop Quantum Gravity String08

.

Generalization: spin-networks and spin-network states

Spin network $S = (\Gamma, j_1, i_n)$ graph Γ spins j_i on links intertwiners i_n on nodes

Spin network state: $\Psi_S(U_e) = R^{(j_1)}(U_1) \dots R^{(j_L)}(U_L) \cdot i_1 \dots i_N = \langle U_e | S \rangle$

 \rightarrow The spin network states $|S\rangle$ form an othonormal basis in \mathcal{H} (Peter-Weyl).

Can we use these loop states as a basis of states in the continuum?

No!

• $<\alpha \mid \alpha> = \infty$

The loop states $I \propto >$ in the continuum are *too singular*

• $\langle \alpha | \beta \rangle = 0$ for β infinitely close to α

States are "too many", as a basis of the Hilbert space.

• An infinitesimal displacement in space yields a different loop state

Carlo Rovelli Loop Quantum Gravity String08

11

So far, just difficulties:

- "Old" nonperturbative quantum gravity does not work.
- A loop-state formalism in the continuum for Yang Mills does not work.

But the two ideas provide the solution to each other's stumbling blocks:

A *loop* formulation of *gravity* solves both sets of difficulties

Diffeomorphism invariance:

|S> and |S'> are gauge equivalent if |S| can be transformed into |S'| by a diffeomorphism!

$$\langle S | \Psi \rangle = \langle S' | \Psi \rangle = \langle S'' | \Psi \rangle$$

for any Ψ.

 \rightarrow States are determined only by an abstract graph γ with j's and i's

s-knot states $|s\rangle = |\gamma, j, i\rangle$, where

Carlo Rovelli Loop Quantum Gravity String08

13

ii. The theory.

- Start from GR, or GR+standard model, or any other diff-invariant theory, in a formulation where the field is decribed by a connection A (Ashtekar).
- Do a canonical quantization of the theory, using a basis of spin network states and operators acting on these.
- Impose diffeomorphism invariance on the states.
- Study the Wheeler deWitt equation.

Result:

- ightarrow A (separable) Hilbert space ${\mathcal H}$ of states, and an operator algebra ${\mathcal A}$.
- \rightarrow Basis of \mathcal{H} : abstract spin network states: graph labelled by spins and intertwiners.
- → A well defined UV-finite dynamics.

\mathcal{H} :

 $\mathcal{H}_{ ext{ext}}$: (norm-closure of the) space of the (cylindrical) functionals $\Psi_{\gamma_i,f}[A] = f(U_{\gamma_1}[A],...,U_{\gamma_n}[A])$

where $U_{\gamma}[A] = e^{\int_{\gamma} A}$, equipped with the scalar product

$$(\Psi_{\gamma_i,f},\Psi_{\gamma_i,g}) \ = \ \int_{SU(2)^n} dU \ \overline{f(U_1,...,U_n)} \ g(U_1,...,U_n)$$

→ This product is SU(2) and diff invariant. Hence \mathcal{H}_{ext} carries a unitary representation of *Diff* and *local SU*(2). The operation of factoring away the action of these groups is well-defined, and defines $\mathcal{H} = \mathcal{H}_{ext}/(Diff$ and *local SU*(2)).

\mathcal{A} :

ightharpoonup Operators well-defined on $\mathcal{H}_{\mathrm{ext}}$, and self-adjoint: $U_{\gamma}[A] = e^{\int_{\gamma} A}$ and $E_{\Sigma} = \int_{\Sigma} E$

where E is the variable conjugate to A, smeared on a two-surface Σ . This acts as an SU(2) Left-invariant vector field on the SU(2) of each line that intersects Σ .

Carlo Rovelli Loop Quantum Gravity String08

15

The LOST uniqueness theorem

(Fleishhack 04; Lewandowski, Okolow, Sahlmann, Thiemann 05)

- $(\mathcal{H}_{\text{ext}},\mathcal{A})$ provides a representation of the classical poisson algebra of the observables $U_{\gamma}[A]$ and E_{Σ} , carrying a unitary representation of Diff,
- \rightarrow this representation is *unique*.

(cfr.: von Neumann theorem in nonrelativistic QM.)

Interpretation of the spin network states IS>

Volume: V(R): function of the gravitational field

$$V(R) = \int_{R} \sqrt{g} = \int_{R} \sqrt{EEE} \rightarrow V(R) \text{ operator}$$

- ightharpoonup V(R) is a well-defined self-adjoint operator in \mathcal{H}_{ext} ,
- \rightarrow It has discrete spectrum. Eigenstates: spin networks state | S >.
- Eigenvalues receive a contribution for each <u>node</u> of |S| inside R

Node = "Chunk of space" with quantized volume

Carlo Rovelli Loop Quantum Gravity

String08

17

Area: $A(\Sigma)$

$$A(\Sigma) = \int_{\Sigma} \sqrt{g} = \int_{\Sigma} \sqrt{EE} \rightarrow A(\Sigma) \text{ operator}$$

- $ightharpoonup A(\Sigma)$ well-defined selfadjoint operator in $\mathcal{H}_{\mathrm{ext}}$.
- → The spectrum is discrete.
- \rightarrow Area gets a contribution for each <u>link</u> of |S| > that intersects Σ .

Area eigenvalues:
$$A=8\pi~\hbar G~\gamma~\sum_i~\sqrt{j_i(j_i+1)}$$

(γ = Immirzi parameter)

Link = "Quantum of surface" with quantized area

Loop Quantum Gravity

String08

- Spin networks are not excitations in space: they are excitations of space.
 - → Background independent QFT
- → Discrete structure of space at the Planck scale in quantum sense

Follows from:

standard quantum theory (cfr granularity of oscillator's energy)

+ standard general relativity (because "space is a field").

Loops & strings: a cartoon comparison

If a string is:

a closed lines in space, that forms matter and forces,

a loop is:

a closed line that forms space itself as well as matter and forces.

Carlo Rovelli Loop Quantum Gravity String08

21

III. The theory - dynamics

$$H(x)$$
 = A

Given by a Wheeler-deWitt operator **H** in \mathcal{H} : $\mathbf{H} \Psi = \mathbf{0}$

- **H** is defined by a regularization of the classical Hamiltonian constraint. In the limit in which the regularization is removed.
- → **H** is a well defined self-adjoint operator, UV finite on diff-invariant states.

The limit $\alpha \to 0$ is trivial because there is no short distance structure at all in the theory!

• The theory is naturally ultraviolet finite

Carlo Rovelli Loop Quantum Gravity String08

27

Matter

- YM, fermions
- Same techniques: The gravitational field is *not* special
- → UV finiteness remains
- YM and fermions on spin networks = on a Planck scale lattice! Notice: no lattice spacing to zero!

• Matter from braiding?

quantum numbers of matter

$$|\mathbf{S}\rangle = |\mathbf{\gamma}, \mathbf{j}_1, \mathbf{i}_n, \mathbf{k}_1\rangle$$

III. The theory - covariant dynamics: spinfoams

Projector $P = \delta(H)$ on the kernel of H:

$$egin{aligned} \langle s'|P|s
angle &= \langle s'|\delta(H)|s
angle = \langle s'|\int DNe^{iNH}|s
angle \ &= c_0\langle s'|s
angle + c_1\,\langle s'|H|s
angle + c_2\,\langle s'|H^2|s
angle + ... \end{aligned}$$

$$\langle s'|P|s
angle = \sum_{\partial(\sigma,j_f,i_n)=(s\cup s')} \;\;\prod_f \dim(j_f) \;\prod_v A_v(j_f,i_n)$$

Carlo Rovelli Loop Quantum Gravity String08

29

Two-complex, colored with spins and intertwiners = spinfoam

Vertex amplitude: A(j,i)

$$oldsymbol{A}(j_{ab},i_a) = \sum_{i_+^+,i_-^-} 15j\left(rac{(1+\gamma)j_{ab}}{2},i_a^+
ight)15j\left(rac{|1-\gamma|)j_{ab}}{2},i_a^-
ight) \otimes_a f_{i_a^-,i_a^-}^{i_a}$$

Spinfoams

$$Z = \sum_{\sigma j_f i_v} \; \prod_f dim(j_f) \; \; \prod_v A_v(j_f, i_v)$$

$$A(j_{ab},i_a) = \sum_{i_a^+,i_a^-} 15j\left(rac{(1+\gamma)j_{ab}}{2},i_a^+
ight) 15j\left(rac{|1-\gamma|)j_{ab}}{2},i_a^-
ight) \otimes_a f_{i_a^+,i_a^-}^{i_a}$$

- Can be directly derived from a discretization of the action of general relativity, on a variable lattice.
- Can be interpreted as a discrete version of Hawking's "integral over geometries"

$$Z = \int Dg \; e^{iS[g]}$$

- → **Z** is generated as the Feynman expansion of an auxiliary field theory defined on a group manifold. This is a 4d generalization of the matrix models (à la Boulatov, Ooguri).
- → In 3d, it gives directly the old Ponzano Regge model (A=6j). (With cosmological constant: Turaev-Viro state sum model.)

Carlo Rovelli Loop Quantum Gravity String08

31

III. Physics

Loop cosmology

- Discrete cosmological time
- → Big Bang singularity removed (from Planck scale non-locality)
- → Evolution "across" the big bang (robust)
- \rightarrow (Super-) inflationary behavior at small a(t)
- \rightarrow scale invariant spectrum with the observed spectral index n_s .

Carlo Rovelli Loop Quantum Gravity String08

33

Black holes

- → Entropy finite, proportional to the area
- → Physical black holes
- S = A/4 if a dimensionless free parameter (Immirzi parameter) is fixed

Carlo Rovelli Loop Quantum Gravity String08

34

Black holes

- → Entropy finite, proportional to the area
- → Physical black holes
- S = A/4 if a dimensionless free parameter (Immirzi parameter) is fixed
- \rightarrow R = 0 singularity under control:

Carlo Rovelli Loop Quantum Gravity

25

String08

background-independent n-point functions \rightarrow low-energy limit

$$W(x,y)=\int D\phi\;\phi(x)\phi(y)e^{iS[\phi]}$$
 is independent from x and y if $D\phi$ and $S[\phi]$ are invariant under $Diff$.

Choose a closed 3-surface where x and y lie, and rewrite W as

$$W(x,y) = \int Darphi \; arphi(x) arphi(y) \; W[arphi] \; \Psi[arphi]$$

where

$$W[arphi] = \int_{\phi_{int}|_{\Sigma} = arphi} D\phi_{int} \ e^{iS[\phi_{int}]}$$

Instead of being determined by boundary conditions at infinity, let the boundary state be a state picked on a given boundary geometry q.

$$W[x,y;q] = \int Darphi \; arphi(x) arphi(y) \; W[arphi] \; \Psi_q[arphi]$$

This expression is meanigful in a *Diff*-invariant theory, and reduces to flat space *n*-point function for appropriate boundary state.

Boundary values of the gravitational field = geometry of box surface

= distance and time separation of measurements

Particle detectors = field measurements

In GR, distance and time measurements are field measurements like the other ones: they are part of the **boundary data** of the problem.

Carlo Rovelli Loop Quantum Gravity String08

37

The graviton two-point function in LQC reads

$$\langle 0|g^{ab}(x)g^{cd}(y)|0
angle = \sum_s W[s] \; g^{ab}(x)g^{cd}(y)\Psi_q[s]$$

And for large distances this is give at first order by

$$W[s] = rac{\lambda}{5!} \left(\prod_{n < m} dim(j_{nm})
ight) \, A_{vertex}(j_{nm})$$

- → The asymptotic expansion of the vertex gives the low-energy behavior of the theory.
- → Premiminary results yield: free graviton propagator; 3 point function; (hence Newton law); first order corrections to the free graviton propagator. Calculations in progress.

Mathematical developments

- Diffeomorphism invariant measures (Ashtekar-Lewandowski measure)
- C* algebraic techniques
- · Category theory
- "Quantum geometry"
- Uniqueness of the representation

Carlo Rovelli Loop Quantum Gravity String08

39

IV. Summary

- Loop quantum gravity is a technique for defining Diff-invariant QFT. It offers a radically new description of space and time by merging in depth QFT with the *diff*-invariance introduced by GR.
- It provides a quantum theory of GR plus the standard model in 4d, which is naturally UV finite and has a discrete structure of space at Planck scale.
- Has applications in cosmology, black hole physics, astrophysics; it resolves black hole and big bang singularities.
 - Unrelated to a natural unification of the forces (we are *not* at the "end of physics").
 - Different versions of the dynamics exist.
 - Low-energy limit still in progress.
 - + Fundamental degrees of freedom explicit.
 - + The theory is consistent with today's physics.
 - + No *need* of higher dimensions (high-d formulation possible).
 - + No *need* of supersymmetry (supersymmetric theories possible).
 - + Consistent with, and based on, basic QM and GR insights.