

CMS and LHC

The CMS detector is performing well

LHC plans

2010-2011 run at 7 TeV peak lum<2×10³² cm⁻²s⁻¹

2012 shutdown

2013-2015 run at 14 TeV peak lum $<1\times10^{34}$ cm⁻²s⁻¹

2016 shutdown

2017-2020 run at 14 TeV peak lum 1-2×10³⁴ cm⁻²s⁻¹

Current CMS Pixel System

3 Barrel layers
2 Forward disks on on each side

Total ~ 1 m² → 65 Mega Pixel (~ 20G transistors)

Performing well!

r [cm] $\eta = 1.5$ $\eta = 1.2$ $\eta = 2.0$ End flange prints with connectors BPIX supply tube 20 FPIX service cylinder AOH & mother board DOH Power boards 10 Sensitive areas 20 60 80 100 40 z [cm]

Goals for pixel upgrade

- Reduce material
- Reduce deadtime as luminosity increases from readout chip
- Increase 3 hit coverage
- * Replace sensors to decrease radiation damage

Reduce Material

KU

- Ultra-light mechanics
- \bullet CO₂ cooling (instead of C₆F₁₄)
- ❖ Eliminate endprint in barrel by using twisted pair cables and move barrel services out in Z

Pixel 2010 Sept 6, 2010

Alice Bean - Univ. of Kansas

Reduce Deadtime

 The current detector was designed for maximum luminosity

$$\mathcal{L} = 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$$

with the PSI46 readout chip (ROC)

- ♦ At L1 trigger rate of 100kHz with 2×10³⁴cm⁻²s⁻¹ expect 16% data loss
 - ◆ Column drain deadtime
 - ◆ Readout deadtime
- → Make new ROC (0.25µm) with larger buffers

Increase 3 hit coverage

10-15% loss in 3 hit coverage for $\eta < 1.5$

- → Make 4 layer barrel, 3 end disks
 - But services are limited by cable plant
 - Change optical readout from 40 MHz analog to serialized 320MHz binary
 - ◆ New ROC needs 8 bit ADC, 160 MHz digital readout
 - ◆ Have micro-twisted pair cables take signals to reduce material

Replace sensors to decrease radiation damage

Current sensors are n+ on n

- ♦ Electron collection allows for operation after space charge sign inversion even without full depletion
- ♦ The expected radiation fluence per year at 10^{34} cm⁻²s⁻¹ for the innermost layer is 3×10^{14} n_{eq}/cm²/yr
- Specified to operate at 6×10^{14} $n_{eq}/cm^2/yr$
- Use similar sensors for 2016, but fine tune design
 - ◆ No other good options, yet
 - ◆ Hit detection efficiency and resolution expected to deteriorate
 - ◆ May need to replace innermost layer before the end of Phase I. Therefore assure that the layers can be installed independently but the sensors may perform fine
 - ◆ See later talk by T. Rohe in this conference

Away from interaction point:

increasing stiffness but also

increasing mass

The layout in Z

Sensor module connector board a ea

Cable trench area (BPIX layer 3&4 outside,

(BPIX layer 3&4 outside,

&2 inside)

decreasing mass (material budged)

The services are complex

There are twice as many ROCs as present system

DC/DC converter area

Opto hybrid area

To limit resistive power loss on loss on 50m long cables Start at higher V and low I near detector put DC/DC buck DC/DC buck converter

Alice Bean - Univ. of Kansas

Reduction of Material?

Barrel

weighs 2.4 times less

Forward Disks

mass reduced by 40%

Radiation length

present

upgrade

Performance - Tracking

- * Improve track seeding efficiency by 8% for η <1
- Fake tracks dramatically reduced

Performance – b-tags

Reduce fakes by factor of 6 for b-id efficiency of 60%

Conclusions

A new, 4 barrel/ 3 disk pixel detector is planned for Phase I running.

Designs are well advanced and simulations show improved physics performance