ATLAS Data Quality Offline Monitoring

Peter Onyisi

CHEP 2009, Prague

Introduction

- The ATLAS experiment aims to reduce the time between data collection and the start of bulk data processing to 24 hours
 - Calibration, alignment, etc. loops must complete in this time
- Must determine quality of data as quickly as possible
- Also important to monitor time variation, both within a run and between runs

ATLAS has several data quality monitoring systems: focus here on checks performed on reconstructed data offline in near-real-time

Data Quality Monitoring Tools

Covering one component of the full architecture here...

Histogram Production

- Monitoring tools run in the ATLAS software framework Athena
- Histograms can be produced with time granularity ranging from a few minutes to a LHC fill
- Tools are environment-aware
 - Same tool can produce different histograms depending on configuration
- "Trigger-aware": different histograms for different types of triggers
- Monitor everything from readout errors to high level physics objects

Integration with Tier 0

- Initial prompt reconstruction of data occurs on the Tier 0 farm at CERN
 - Reconstruction as soon as partial data available long before run ends
- Reconstruction jobs include monitoring tools
- Every 15 minutes, intermediate histogram files are merged and displayed on the web
- Full merge occurs at end of run, final histogram files are registered on the Grid

Data Quality Monitoring Core

- System for automatically checking histograms against expectations
- As histograms become available, they are run through "algorithms"
 - Algorithms can be simple (check number of filled bins) or complex (χ^2 comparisons, K-S tests)
 - Algorithms can use predetermined "reference" histograms for comparisons
 - Algorithms publish a "status" (red, yellow, green, or undetermined) and "results" (e.g. bins over threshold)
- Status checks are combined by summary algorithms
- Core software is shared with online monitoring

Offline Realization

- Subdetector configurations merged and compiled into a binary configuration file
 - References included: binary configuration is self-contained
- "Han" (**H**istogram **an**alyzer) program reads configuration and an input ROOT file with histograms, runs the core monitoring code for automatic checks
- Han outputs a ROOT file containing
 - checked histograms,
 - check status and results,
 - configuration,
 - references

(again, self-contained)

24 March 2009

Visualization

- The default visualization of the results is HTML pages produced by "handi" (han display)
- Histogram, status, and algorithm results are shown
- Display options (e.g. axes ranges, linear/log scales) are specified in the han configuration
 - handi only needs the han output to run

Database Storage

- Specific checks (or check summaries) are stored in the ATLAS conditions database
 - Results stored with the time granularity of the relevant check
- Results can be queried via C++, Python, web

Exposing Results: Web Service

- An XML-RPC web service provides access to information in the han output files
 - Status flag
 - Algorithm results (mean, RMS, ...)
 - URL of PNG file of histogram from web display
 - Histograms themselves (transferred via ROOT's XML serialization)
 - ...
- Allows distributed, language-neutral use of this information Sample python code to retrieve information:

```
import xmlrpclib
s = xmlrpclib.ServerProxy('http://atlasdqm.cern.ch')
result = s.get dqmf results(
               {'stream': 'physics_IDCosmic',
                'source': 'reproc',
                'low_run': 92226,
                'high_run': 92226},
                'InnerDetector/Pixel/PixelExpert/ToT/m_Pixel_track_cluster_ToT:XMean')
```


Web Service Example: History Plots

Plot dynamically generated across network using XML-RPC interface — no ROOT/database/... required

Other Uses

- The automatic check/web display code is relatively lightweight and is not tied to ATLAS Tier 0 reconstruction
- Has been deployed elsewhere:
 - Monitoring of later data reprocessing at Tier 1s
 - Software validation (does the output of today's nightly differ from yesterday's?)
 - Monte Carlo production validation

Production Experience

- Offline data quality monitoring was running at LHC startup
- Infrastructure fully exercised on Tier 0 during Sep-Dec 2008 cosmic ray data run with very few problems
- Check configurations rapidly developing as experience is gained with the detector
- Web service interface still very young, learning what we can do with it
- Still investigating usage in other contexts

Conclusion

- ATLAS offline data quality monitoring gives feedback on data within $\mathcal{O}(15 \text{ minutes})$ after collection
 - Automatic checks are performed
 - Results available on web
- System has been running smoothly in this role
- Other uses of infrastructure being explored and implemented

