The cryogenic performances of specific optical and electrical components for a liquid argon time projection chamber

Andy Tiankuan Liu^{1*}, Datao Gong¹, Suen Hou², Chonghan Liu¹, Da-Shung Su², Ping-kun Teng², Annie C. Xiang¹, and Jingbo Ye^{1*}

¹ Southern Methodist University

² Institute of Physics, Academia Sinica

* On behalf of the LBNE collaboration

tliu@mail.smu.edu

Outline

□Introduction of LBNE and LArTPC
□Cryogenic performance of electrical data links
□Cryogenic performance of optical data links
□Cryogenic performance of FPGAs

Cryogenic performance of passive components

T. Liu- Southern Methodist University

□ Conclusion

Long-Baseline Neutron Experiment & Liquid Argon Time Projection Chamber

Front-end Electronics – LArTPC at 800' underground

17:40pm, Craig thorn, "Cold electronics development for the LBNE LArTPC", Room: Superior A

One Anode Plane Assembly (APA) is shown

Electrical Links – Test setup

Motivation: **how fast** can an LVDS signal be transmitted over **how long** twisted pair cable at cryogenic temperature?

Electrical Links - Results

- The electrical link works at room temperature (300 K).
 The bit error rates (BER) < 8.2E-14 at 1 Gb/s (no error in 3 hours 23 minutes)
- The eye diagrams at 77 K have wider eye opening than those at 300 K. At 1 Gb/s, the bit error rate (BER) is <
 3.9E-13 (no error in 42 minutes).

FE Electronics – LArTPC on the surface

One Anode Plane Assembly (APA) is shown

Optical Links – Optical fibers

Laser source and power meter

Results:

Fiber insertion loss increases from RT to 77 K:

MM: $0.034 \pm 0.015 \text{ dB/m}$ SM: $0.005 \pm 0.002 \text{ dB/m}$

Compare: the power budget (7.3 dB for MM and 9.4 dB for SM in the 10 Gb/s Ethernet standard).

Optical Links – Optical connectors

Results:

Insertion loss change from RT to 77 K:

MM: 0.139 ± 0.020 dB/connector SM: -0.284 ± 0.014 dB/connector

Optical Links - Laser diodes

A vertical cavity surface emitting laser (VCSEL) diode, a distributed feedback (DFB) laser diode and a Fabry Perot (FP) laser diode have been tested. All diodes continue to lase from room temperature to 77 K.

Change from RT to 77K	Vth	lth	Light efficiency	λ
VCSEL	\uparrow	\uparrow	_	\
Fabry-Perot (FP)	\uparrow	\downarrow	_	\downarrow
Distributed feedback (DFB)	\uparrow	\downarrow	\downarrow	\downarrow

T. Liu- Southern Methodist University

Optical Links - A serializer ASIC

- Process: fabricated in a commercial 0.25 μm Silicon-on-sapphire (SoS) CMOS technology
- Input: 16 bit parallel data and 1 clock, LVDS
- Output: 1 bit serial, CML
- Operation range: 4.0 5.7 Gb/s
- Power dissipation: 463 mW
- Total jitter at the bit error rate of 10⁻¹²: 62 ps (peak-peak).

Optical Links – ASIC @77 K

When temperature decreases

- Amplitude increases
- Speed increasesJitter decreases

Room temperature, 5.2 Gb/s, 2.5 V

77 K, 5.2 Gb/s, 2.5 V

77 K, 5.2 Gb/s, 1.8 V

FPGA @ 77K

Motivation:

- An FPGA may be a low cost candidate for both electrical links and optical links.
- Before the digital ASIC is available, an FPGA may be used for the small volume LArTPC prototype.
- Two questions need to be answered: the cryogenic performance and reliability.
- **Setup:** Altera Stratix II GX EP2SGX90 and Altera Cyclone II EP2C20F484C8 in Liquid nitrogen
- Results: Both FPGA work at 77 K with no error in 20 minutes.

Resistors and capacitors

- Motivation: passive devices are needed in cold frontend electronics. For example, the decoupling capacitors and AC coupling capacitors from the wires to pre-amplifiers must be in liquid argon.
- Setup: Measured before, when dipped in the liquid,
 20 minutes after taken out of the Dewar, and when dipped in the liquid again.

Results:

- Resistors: At 77 K, the resistance of the carbon composition resistors increase 19% and the resistance of metal element, wire wound, carbon film, thin film, metal film, thick film) change less than 7%.
- Capacitors: Tantalum Electrolytic, COG ceramic, film and mica capacitors change parameters significantly less than aluminum electrolytic, niobium oxide electrolytic capacitors, U, X, Y, Z ceramic capacitors.
- Repeatability: Resistance and capacitance at 77 K are repeatable

Type	Parameter change (%)	
Metal Element	-6.59	
Carbon Composition	19.10	
Carbon Film	6.40	
Thin Film	-0.21	
Metal Film	0.08	
Wire wound	0.15	
Thick Film	3.48	
Al electrolytic	-100%	
NbO electrolytic	-71% ~ -39%	
Ta Electrolytic	-10%	
COG/NPO ceramic	-4.1% ~ 0.35%	
U, X, Y, Z ceramic	-24% ~ 94%	
Film	-13% ~ 3.8%	
Mica	-0.35% ~ -0.12%	
	Metal Element Carbon Composition Carbon Film Thin Film Metal Film Wire wound Thick Film Al electrolytic NbO electrolytic Ta Electrolytic COG/NPO ceramic U, X, Y, Z ceramic Film	

Conclusion

- We have studied the cryogenic performances of
 - LVDS driver and CAT5E twisted-pair cables
 - 16:1 serializer ASIC, laser diodes, optical fibers, and optical connectors
 - FPGAs
 - Resistors and capacitors
- We don't see any show stopper in both electrical data links and optical data links.
- Some components (e.g., laser diode drivers) have not been studied yet.
- So far we've studied only the cryogenic performance and just started considering another important issue, the reliability.