
DETECTOR-INDEPENDENT VERTEX RECONSTRUCTION
TOOLKIT (VERTIGO)

W. MITAROFF, G. RICHTER and W. WALTENBERGER
Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria

Abstract

A proposal is made for the design and implementation of
a detector-independent vertex reconstruction toolkit andin-
terface to generic objects (VERTIGO). The first stage aims
at re-using existing state-of-the-art algorithms for geomet-
ric vertex finding and fitting by both linear (Kalman fil-
ter) and robust estimation methods. Prototype candidates
for the latter are a wide range of adaptive filter algorithms
being developed for LHC/CMS, as well as proven ones
(like ZVTOP of SLC/SLD). In a second stage, also kine-
matic constraints will be included for the benefit of com-
plex multi-vertex topologies.

The design is based on modern object-oriented tech-
niques. A core (RAVE) is surrounded by a shell of abstract
interfaces (using adaptors for access from/to the particu-
lar environment) and a set of analysis and debugging tools.
The implementation follows an open source approach and
is easily adaptable to future standards.

Work has started with the development of a specialized
visualisation tool, following the model-view-controller
(MVC) paradigm; it is based on Coin3D and may also in-
clude interactivity by Python scripting. A persistency stor-
age solution, intended to provide a general data structure,
was originally based on top of ROOT and is currently be-
ing extended for AIDA and XML compliance; interfaces
to existing or future event reconstruction packages are eas-
ily implementable. Flexible linking to a math library is an
important requirement; at present we use CLHEP, which
could be replaced by e.g. a generic product.

MOTIVATION AND GOALS

In the offline data reduction chain, the early stages –
local pattern recognition and track fitting – are highly
detector-dependent, whereas the next stage – vertex re-
construction (finding and fitting) is almost fully detector-
independent. Vertex fitting with kinematic constraints
may rather be subject to the requirements of a subsequent
physics analysis.

Why looking for a toolkit? Geometric vertex finding
and fitting must not compromise the high spatial resolu-
tion of modern vertex detectors. This goal can be achieved
by new, sophisticated methods beyond the traditional least
squares or Kalman filter estimators, using robust, non-
linear, mostly adaptive algorithms. It is not desirable for
each new detector to re-code vertex reconstruction from
scratch – provided there exists an adequate, reliable and
easy-to-use TOOLKIT.

As a good point to start from, we propose taking out
vertex reconstruction from the CMS general reconstruction
software ORCA, thus providing the basic stock for the core
of such a toolkit. However, the core must be complemented
by flexible interfaces and a modular set of analysis & de-
bugging tools.

DESIGN CONCEPTS OF VERTIGO

A draft version of the overall design – core, interfaces
and optional packages – is shown in Fig. 1.

The RAVE core

The core, called RAVE (“Reconstruction Algorithms for
Vertices”), is to become a collection of the best algo-
rithms available for vertex reconstruction – finding, fitting
and kinematics; starting with the packages developed by
CMS [1], but open for entries by other parties. The code
is to be based on C++ and HEP-wide (albeit not CERN-
specific) OO standards.

Candidate core algorithms include packages of general
tools (e.g. clustering), for vertex fitting (e.g. the deter-
ministic annealing filter, DAF), and for vertex finding (e.g.
the “apex point” method). At present, the list is domi-
nated by algorithms implemented in the CMS offline re-
construction (ORCA [2]), but non-CMS candidates exist
(e.g. ZVTOP [3]). New entries of first-class algorithms are
highly welcome.

Documentation (based on Doxygen) of the algorithms,
including information about their scope of application, will
be provided. The proper choice of algorithms is also sup-
ported by the SKIN concept (see below).

Shell of interfaces

Access from/to the outside world will exclusively pro-
ceed via a “shell” of interfaces surrounding the core. These
interfaces make use of adaptors in order to keep a high level
of abstraction; good design will be the key of success.

Analysis & debugging tools

Analysis & debugging tools are optional packages, con-
taining those parts of code which might be helpful without
being strictly necessary. Prototypes of a few packages have
already been written: the framework for a stand-alone re-
alisation of VERTIGO, a persistency storage solution, data
sources, and a visualisation tool; but much more work is



Figure 1: VERTIGO overall design (draft).

still to be done. Extensive use of open standards will mini-
mize the burden of development for this part of the toolkit.

The persistency storage solution was originally based
on top of ROOT [4]; it is currently being extended
by more standard-compliant alternatives (AIDA [5] and
XML). Data sources include a “vertex gun”, interfaces to
LCIO [6], etc. All I/O is handled through a data harvesting
concept (which may possibly be integrated as front/end in
AIDA): object → STL map→ ASCII / ROOT / AIDA /
binary file / stream (“harvester”) and vice versa (“seeder”),
see Fig. 2. The STL mapping is heterogeneous: it handles
int/double/string objects as multi-type, thus supportinga
syntactically simple use of this tool.

Visualisation is deliberately kept simple for the sake of
detector-independence, fulfilling solely the need of giving
insight into the geometric and associative correlations of
the vertex reconstruction algorithms input and output. It
follows the model-view-controller (MVC) paradigm and is
based on Coin3D [7]. Object data are accessed as multi-
type STL maps: at present only indirectly from a file
through the seeder; in future maybe also directly through
the harvester and a TCP stream. Interactivity is at present
limited to manipulators on graphic objects. The tool may
later be augmented with full-scale interactivity, to be pro-
vided by Python (or some other scripting language). Ex-
ample snapshots are shown in Figs. 3 and 4.

Since the proper choice of a math library package (in-
cluding linear algebra) is crucial for the efficiency and re-
liability of the toolkit, several candidates are being eval-
uated. CLHEP [4] appears to be the only choice freely
available today, but there are serious doubts about its relia-
bility. NAGlib [8] is a reliable alternative, but may be too
expensive for users outside of campus licence agreements.
Generic (template) libraries would be our preferred choice;
candidates exist, e.g. Blitz++, FLENS, GSL, MTL [9] (all
GPL-licenced), but up until lately none provides the full
functionality required. As Blitz++ and GSL are becom-
ing an integral part of the SEAL project [4] at CERN, they
might emerge as promising alternatives.

The SKIN concept

The different experiments should be free to use different
sets of the optional packages. A package may be part of
and shipped with VERTIGO; or it may be maintained by
the particular experiment, and VERTIGO provides only the
appropriate interface.

An experiment-specific set of packages is called a SKIN.
Examples are a stand-alone skin (called the “framework”),
CMS skin, BELLE skin, and skins for the emerging ILC
detectors [10]. Pre-defined skins may easily be selected by
the user. Maintenance and distribution of the toolkit will be
supported by a CVS repository at HEPHY Vienna.



Figure 2: The data harvester/seeder concept.

CONCLUSIONS AND OUTLOOK

This is (according to our knowledge) among the first
large-scale attempts of refining a substantial part of re-
construction software into a detector-independent toolkit.
Ideas for such a development have been around since
long [11], but it is only now that, with the high level of ab-
straction and generalization of the algorithms required to
meet the challenges of LHC and ILC computing, building
blocks sufficiently versatile for such a toolkit have come
into existence. A similar approach is currently being at-
tempted for track reconstruction (RecPack [12]).

Interests in using the toolkit, once it will be released,
have been expressed by CMS, ATLAS, LHCb, BELLE
and International Linear Collider (ILC) collaborators, with
more expected to follow. Close collaboration among the
contributing laboratories is welcome and will be essential
for success.

REFERENCES

[1] R. Frühwirth et al., Proc. CHEP 2003, La Jolla (Cal, USA),
ed. J. Branson, SLAC-R-636 / eConf C0303241.

[2] V. Innocente et al., Proc. CHEP 2000, Padova (Italy), pp.56-
64, ed. M. Mazzucato, INFN Sezione di Padova.

[3] D.J. Jackson, Nucl.Instr.Meth. A 388 (1997) 247-253.

[4] ROOT,http://root.cern.ch/
CLHEP,http://proj-clhep.web.cern.ch/
SEAL, http://seal.web.cern.ch/

[5] AIDA, http://aida.freehep.org/ and
http://wwwasd.web.cern.ch/wwwasd/lhc++/AIDA/

[6] LCIO, http://lcio.desy.de/

[7] Coin3D,http://www.coin3d.org/

[8] NAG libraries,http://www.nag.co.uk/

[9] Blitz++, http://www.oonumerics.org/blitz/
FLENS,http://flens.sourceforge.net/
GSL,http://www.gnu.org/software/gsl/
MTL, http://www.osl.iu.edu/research/mtl/

[10] http://www.desy.de/conferences/ecfa-lc-study.html

http://blueox.uoregon.edu/∼lc/wwstudy/

http://www.interactions.org/linearcollider/

[11] R. Frühwirth et al., Comp.Phys.Comm. 96 (1996) 189-208.

[12] A. Cervera-Villanueva et al., Proc. ATAC 2003, Tsukuba
(Japan), ed. T. Kaneko, Nucl.Instr.Meth. A (in print).



Figure 3: Snapshot of two reconstructed tracks (with their transversal errors shown as a tube), together with their apex
points (with error ellipsoids). The parameters of one trackare displayed at the bottom.

Figure 4: Snapshot of three reconstructed tracks, togetherwith two (out of three) triples of points of closest approach
(yellow) and crossing points (gray); with their three apex points (with error ellipsoids, green); and with the fitted vertex
position (with error ellipsoid, blue). The parameters and covariant errors of one apex point are displayed at the bottom.
The corresponding manipulator window is displayed on the right.


