Parameters for 2011 - 2011 operation plans

Warning!

This exercise is supposed to outline the possible operating conditions in 2011.

Of course we frequently end up doing things differently!!

The clients

- □ ATLAS & CMS : L as high as possible.
- LHCb:
 - $-L \le 3 \times 10^{32} \text{ Hz/cm}^2$
 - $-\mu$ ≤ 2.5 events/Xing

 $(\sigma_{vis} = 72.5 \text{ mb})$

- □ ALICE:
 - $-L \le 4 \times 10^{30} \text{ Hz/cm}^2$
- **TOTEM**:
 - Operate at ≥ 15σ
 - Leading probe bunch in the standard filling scheme.

Special client requests

- VdM scans now and then.
 - Move TCTs with beam.
- □ALICE:
 - Run at 1.38 TeV (equiv. nucleon energy to Pb-Pb). Collect 50×10⁶ events (few fills with low int).
- □ TOTEM (& ALFA):
 - $-\beta^*$ 90 m, few bunches of ~ 6-7×10¹⁰:
 - \circ RPs at 7-8 σ and at 5-6 σ .
 - \circ With ε = 3 μ m and ε = 1 μ m.

Small holes !!!!!!

CERN

Flipping spectrometers

- □ LHCb and ALICE want to flip spectrometer polarities (& OFF)
- LHCb: affects only H orbit
 - Correction of non-closure (non-reproducibility) using external compensators working well.
- □ ALICE: <u>solenoid is flipped at the same time</u>.
 - V orbit (spectr.): same as for LHCb.
 - More tricky due to coupling of solenoid >> H orbit. Not done properly this year (knob structure).

Better correction procedure in the pipeline for 2011

Energy and beams

- Assume operation at 4 TeV confirm or not in Chamonix.
 - Moderate difference to 3.5 TeV:

```
β* reach, physical ε, quench threshold (UFOs...)
```

- Assume that 75 ns spacing is our work-horse beam.
 - Start immediately with this beam.
 - 150 ns as (working) hot spare.
 - 50 ns as development (2012 ?) and for beam scrubbing.

Not limited in total intensity – excellent performance of the collimation system, the machine (stability & FBs), and and good lifetimes!

Filling schemes

- Start with a probe (~10¹⁰). Avoids over-injection. Q-diagnostics.
- First injection 12-24(?) bunches.
- Followed by nominal injections up to 96/144 b 'achievable'

Schema	150 ns	75 ns	50 ns
Approx. max. bunches	450	930	1400

CERN

High luminosity IR β^* (1)

- $\square \beta^*$ reach given by:
 - o (knowledge of) aperture,
 - o tolerances → orbit reproducibility.

Too tight – less efficiency Too loose – less lumi

- Quality of the orbit has increased during the 2010 run.
 - lons ≥ 150 ns ≥ July/August BPM calibration/T correction
 - Residual excursions / month $\approx \pm 0.2$ mm (peak).
 - Anticipate further quality improvements in 2011.

High luminosity IR beta* (2)

■ With 2010 <u>intermediate</u> collimators settings:

R. Bruce

- \circ $\beta^* = 2.5 \text{ m}$ should be no problem.
- With moderate collimators settings (reduced margin TCT-triplet and TCT-TCDQ) could push:
 - o to $\beta^* = 2 \text{ m}$,
 - o or even to $\beta^* = 1.5 \text{ m}$.
 - Remember that below 2 m squeeze becomes more tricky !!!
 - Long-range beam-beam.
 - Aperture measurements <u>VERY</u> early in 2011 run could increase our confidence in the choice of β^* . Should prepare settings for β^* down to 1.x m (x \leq 5).

ALICE & LHCb β*

□ ALICE:

- ∘ 'Would profit from $\beta^* \le 2m$ ' (vertex).
- \circ To reduce the required separation at high L, use $\beta^* = 10 \text{ m}$.
 - \circ Squeeze to same β^* as high Lumi IRs would reduce ion switchover time.
- \circ Required separation ~3-4 σ .
- \square LHCb has requested $\beta^* = 3.5$ m as an optimum (for integrated L) during intensity ramp-up and high L operation (LPC).
 - \circ β^* = 4-5 m could represent a better optimum for high L.
 - ∘ Required separation ≤ 2σ . Or β * squeeze in collision.
 - Will come back to this later...

Squeeze

Separation and Xing angles

- To gain aperture we should reduce the separation from R. Bruce
 - ±2 mm (inj. & ramp) to ±0.7 mm (squeeze)

Could do it in the first 1-2 minutes of the squeeze (or in the ramp).

- To keep things simple we should change Xing angles from injection (±170 μrad) to physics (±120-140 μrad) at the same time.
- Changes implemented using the bump scaling feature of the OFB.
 - Squeeze in a single step no intermediate stops.

Draft schedule – 1st 1/2

Start non-LHC physics program

		Apr	May				June						
Wk	13	14	15	16	17	18	19	20	21	22	23	24	25
Мо	2B	4	11	18	Easter	2	9	16	23	30	6	Whit 13	20
Tu					()		
We				9					(
Th					9					Ascension	8		
Fr				G. Friday	8				8				
Sa				8	9								
Su				8	1st May				6				

Draft schedule – 2nd 1/2

Technical Stop

Recommisssoning with beam

Machine development

Ion run

Ion setup

Resurrection in 2011

- Get it in bootstrap with 2010 settings.
 - Circulating beam (immediate if we are lucky), injection.
- Injection.
 - New base orbit for 2011 to be used in all phases, only IR bumps (Xing, separation, lumi) should be variable. Well calibrated BPMs!!
 - Optics checks.
 - Full collimation and absorber setup at injection, validation.
 - Aperture measurements.
 - Injection & TLs.
- Ramp and squeeze.
 - Establish ramp and squeeze base orbit (flat orbit) with safe beams.
 - Optics checks and corrections.
 - Xing/separation on.
 - Full collimation and absorber setup, validation.

It is all under control...

- Numerous controls change are anticipated / have been requested.
 - Not everything will be transparent time for testing.
 - Equipment and high level (LSA).
- Nominal sequence will change.
 - Requires a significant number of test ramps.
 - 2010 bunch train period: used the collimation/dump loss maps for training and qualification. Could reuse this period in 2011, but we also want to make the loss maps more efficient!?

A large number of improvements!

And don't forget few changes of the HW...

Ramping up – 75 ns

- □ Ramp up strategy not yet discussed / decided.
 - > > 'best guest' first order proposal.
- ☐ Phase 1: back to 200 bunches in 50 bunch steps.
 - 50 − 100 − 150 − 200
 - 10 days to get back. Finalize sequence. Give experiments something to chew.
- □ Insert scrubbing run here ???
- □ Phase 2: progress with 100 (200) bunch steps.
 - 200 − 300 − 400 − 500 − 600 − 700 − 900
 - A few fills for each step, count 3+ weeks.
 - o Pace could be driven by e-cloud/vacuum, beam 'stability', UFOs, MPS, **SEUs**, OP considerations (shift rota)...

Proton operation day count

Item	Days
Total p OP - 37 1/2 weeks	262
11 MDs (2 days)	-22
6 TS (4+1 days)	-30
Special requests	-10
Commissioning	-28
Intensity ramp up	-40
Scrubbing run	-8
Total HIGH INTENSITY	124

Assume 125 days at peak luminosity

Stable period shrinks quickly if there are many exotic requests!

Integrated luminosity

The Hubner H factor relates peak lumi, integrated lumi and scheduled time:

$$L_{\mathrm{int}} = H L_{\mathrm{peak}} \Delta t$$

□ To set the scale:

$$L_{peak} = 10^{32} \text{ Hz/cm}^2$$

 $\Delta t = 100 \text{ days}$
 $H = 0.2$

$$L_{int} = 172 \text{ pb}^{-1}$$

We want ≥ 1000 pb⁻¹

H in a nutshell

$$< L > \approx \frac{3}{4} L_{peak}$$

$$e_{st} = \frac{time \ in \ stable \ beams}{total \ scheduled \ time}$$

$$L_{\text{int}} = H L_{peak} \Delta t = < L > e_{st} \Delta t$$

$$H = e_{st} < L > / L_{peak} \approx \frac{3}{4} e_{st}$$

For H = 0.2 we need: $e_{st} = 26\%$

W. Venturini : Yes! We can do that!

How dense?

- Collimators are OK for nominal @ 7 TeV, but not the TCDQ need final answer to define reach in intensity and emittance.
 - $_{\odot}$ Assume OK for N_b = 1.2x10¹¹, ε = 3.75 μ m for 50 ns spacing @ 7 TeV
- Deposited energy density scaling to first order:

$$E_{density} \propto \frac{NE}{(\varepsilon_n / E)} = \frac{NE^2}{\varepsilon_n}$$

See also Safe beam flag (based on Cu):

$$N_{SBF} E^{-1.7} \approx cte$$

(shower effects taken into account)

Beam parameters @ injection (SPS)

From E. Metral

75 ns	$N_b [10^{11} \text{ p/b}]$	$\boldsymbol{\varepsilon}_n [\mu \mathbf{m}]$
1-batch	1.2	2

OK in terms of density

50 ns	$N_b [10^{11} \text{ p/b}]$	$\boldsymbol{\varepsilon}_n$ [μ m]
1-batch	1.15	2.5
1-batch	1.6	3.5
2-batch	1.15	1.5

75 ns performance

 $\Delta t = 125 \text{ days} \quad H = 0.2$

Schema	β* (m)	kb	Nb	ε (μm)	L (Hz/cm2)	Stored E (MJ)	L int (pb-1)
75 ns	2.5	930	1.10E+11	3.5	4.7E+32	65.5	1011
75 ns	2.0	930	1.10E+11	3.5	5.9E+32	65.5	1264
75 ns	1.5	930	1.10E+11	3.5	7.8E+32	65.5	1685
75 ns	2.5	930	1.20E+11	2.5	7.8E+32	71.4	1685
75 ns	2.0	930	1.20E+11	2.5	9.8E+32	71.4	2106
75 ns	1.5	930	1.20E+11	2.5	1.3E+33	71.4	2808

Similar head-on bb than with 150 ns

With 150 ns spacing: 1 fm⁻¹ feasible!

Luminosity 8x10³² Hz/cm²

 $8x10^{32}$

75 ns beam

950 bunches

Feasible with ~nominal beam parameters.

Luminosity 10³³ Hz/cm²

75 ns beam

950 bunches

L \geq 10³³ Hz/cm² reachable for β * of 2-2.5 m.

50 ns performance

 $\Delta t = 125 \text{ days}$ H = 0.2

Schema	β* (m)	kb	Nb	ε (mm)	L (Hz/cm2)	Stored E (MJ)	L int (pb-1)
50 ns	2.5	1400	1.10E+11	2.5	9.9E+32	98.6	2131
50 ns	2.0	1400	1.10E+11	2.5	1.2E+33	98.6	2664
50 ns	1.5	1400	1.10E+11	2.5	1.6E+33	98.6	3552
50 ns	2.5	1400	1.60E+11	3.5	1.5E+33	143.4	3221
50 ns	2.0	1400	1.60E+11	3.5	1.9E+33	143.4	4026
50 ns	1.5	1400	1.60E+11	3.5	2.5E+33	143.4	5368

Luminosity leveling - LHCb

By beam separation:

- □ Pick peak luminosity, divide by 2 → end of fill luminosity.
 - \circ Pick β^* from end of fill luminosity to match to LHCb peak L.
 - $\rightarrow \beta^* = 3-5$ m depending on assumptions.
 - \circ Take some margin (lower β^*).
- □ Level luminosity with beam separation.
 - Some debate if that works in 2010 we have not really seen detrimental effects.
 - Gain experience.

This would clearly be a very simple way to serve LHCb well!

ALICE – LHCb separation

$$Sep [\sigma] = 2\sqrt{\ln(L_0/L)}$$

We should separate in the V plane in both IRs to 'decouple' from asynchronous dump.

Tricky in ALICE??

ALICE: $\beta^* = 10 \text{ m}$, head-on L = $(1-2) \times 10^{32} \text{ Hz/cm}^2$

LHCb : $\beta^* = 3.5$ m, head-on L = $(4-7) \times 10^{32}$ Hz/cm²

Dynamic β^* for LHCb

- ☐ In 2010 we clearly demonstrated that we can make very smooth squeezes - thank you FBs!
- ☐ Technically we could define a number of squeeze points for LHCb.
 - Jump from one point to the next every now and then.
- But:
 - Must be done in stable beams else waste too much time.
 - Extra collimator setups and validations.
 - This is something that we would NOT like to commission with 900 bunches → start early on...

lons

- \square Ion luminosity will profit from β^* reduction.
 - Current schedule foresees only 4 days of setup.
 - To stick to that time we must squeeze ALICE in p+ operation else we may need more time!
- To really boost the ion performance we must switch to the nominal ion scheme (100 ns separation).
 - Boost no. bunches from 120+ to ≈500.

Potential luminosity gain by factor 6-10!

Conclusions

31

- □ Estimated no. of days at high luminosity ~125 days (for a total time of 260 days!) – 50%!!
 - o In order not to waste time we must have a good plan and not let ourselves be diverted from the target of stable high intensity running.
- □ Luminosity of 10³³ cm⁻²s⁻¹ could be reached with 75 ns beams.
 - o Integrated L ~1-3 fb⁻¹.
 - Optimum parameters to be selected carefully taken into account all parameters – for example injection efficiency may favor low ε over high bunch charge.
 - Efficiency, efficiency, efficiency.

LHCb:

 Should find a consensus on the best approach for leveling: separation versus squeezing.

Flat top orbit: Now versus June

