



# Status of Daya Bay: Observation of Electron-Antineutrino Disappearance



#### 刘江来 · Jianglai Liu

Shanghai Jiao Tong University

On behalf of the Daya Bay Collaboration

PRL 108, 171803 (2012)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 27 APRIL 2012

Observation of Electron-Antineutrino Disappearance at Daya Bay

## **Pre-2012 Knowledge on** $\theta_{13}$



#### Measurement of $\theta_{13}$ : $\overline{\nu_e}$ Disappearance at Reactors



#### How to Measure $\overline{v_e}$

Use liquid scintillator ~ CH2 doped with Gd

#### **Inverse Beta Decay**



Neutrino Energy (MeV)



Coincidence signal: detect Prompt:  $e^+$  annihilation  $E_v = KE_{e^+} + 1.8 \text{ MeV}$ Delayed: n capture on proton (2.2 MeV) or Gd (8 MeV)  $\Delta t$  (delayed-prompt) ~ 28 usec for 0.1% Gd-doped LS

#### **Push the Precision**



#### **Relative Measurement**



#### **Daya Bay Collaborations**

Political Map of the World, June 1999

Europe (2)

JINR, Dubna, Russia Charles University, Czech Republic

#### North America (16)

BNL, Caltech, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary

#### Asia (20)

Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Univ.Tech., IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

#### ~230 Collaborators

#### Daya Bay

# Powerful nuclear power plant (top 5 in the world) by mountain



#### **Experiment Layout**



TABLE I. Overburden (m.w.e), muon rate  $R_{\mu}$  (Hz/m<sup>2</sup>), and average muon energy  $E_{\mu}$  (GeV) of the three EHs, and the distances (m) to the reactor pairs.

## **Experiment Survey**



#### **Detailed Survey:**

- GPS above ground
- Modern theodolites underground
- Final precision: 28mm

#### Validation:

- Three independent calculations
- Cross-check survey
- Consistent with reactor plant and design plans

Negligible reactor flux uncertainty (<0,02%) from precise survey.

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

#### **Detector Design**



**Cylindrical 3-zone Structure** Separated By Acrylic Vessels:

**I.Target: 0.1%** Gd-loaded liquid scintillator, **20 ton** 

II. Gamma-catcher: liquid scintillator,

**III. Buffer shielding:** mineral oil

Acyrlic vessel thickness: 1.5 cm (outer) and 1 cm (inner)

**192 8" PMT's on circumference and reflective reflectors on top and bottom.** 

**6 'functionally identical' detectors:** Reduce systematic uncertainties

$$= \left( \frac{N_{\rm p,f}}{N_{\rm p,n}} \right) \left( \frac{L_{\rm n}}{L_{\rm f}} \right)^2 \left( \frac{\epsilon_{\rm f}}{\epsilon_{\rm n}} \right) \left[ \frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})} \right]$$

 $N_{\rm f}$ 

 $\overline{N_{\mathrm{n}}}$ 

#### **Automated Calibration System**



Three axes: center, edge of target, middle of gamma catcher



3 sources for each z axis on a turntable (position accuracy < 5 mm):

- 10 Hz <sup>68</sup>Ge
- 0.5 Hz <sup>241</sup>Am-<sup>13</sup>C neutron source + 100 Hz <sup>60</sup>Co gamma source
- LED diffuser ball (500 Hz)

#### **Muon Detector**





- Outer layer of water veto (on sides and bottom) is 1m thick, inner layer
   >1.5m. Water extends
   2.5m above ADs
- 4-layer RPC modules above pool
- Efficiency:
  - Water > 97%
  - RPC > 88%

#### **Interior of Antineutrino Detector**



#### **EH1: Pool Filled**



## Hall 1: Completed



## Hall 2 and Hall 3



Hall 2: Began 1 AD operation on Nov. 5, 2011



Hall 3: Began 3 AD operation on Dec. 24, 2011

2 more ADs still in assembly; installation planned for Summer 2012

#### **Data Period**

#### **Two Detector Comparison:**

- Sep. 23, 2011 Dec. 23, 2011
- Side-by-side comparison of 2 detectors
- Demonstrated detector systematics better than requirements.
- Details presented in: F.P. An et al., arXiv:1202.6181 (2012)

#### **Current Oscillation Analysis:**

- Dec. 24, 2011 Feb. 17, 2012
- All 3 halls (6 ADs) operating
- DAQ uptime: >97%
- Antineutrino data: ~89%



## **PMT Light Emission (Flashing)**

#### **Flashing PMTs:**

- Instrumental background from ~5% of PMTs
- 'Shines' light to opposite side of detector
- Easily discriminated from normal signals





## **Energy Calibration**

Weekly deployments of <sup>60</sup>Co at detector center: Monitor photoelectrons collected per MeV





#### **Singles Spectrum: Understood**



Measured Rates: ~65 Hz in each detector (>0.7 MeV)

**Triggered signals dominated by low-energy radioactivity** 

#### Sources:

Stainless Steel: U/Th chains PMTs: 40K, U/Th chains Scintillator: Radon/U/Th chains

#### **Prompt/Delayed Energy**



**Clear separation of antineutrino events from most other signals** 

## **Delayed Energy Cut**

# Largest uncertainty between detectors

Some *n*-Gd gammas escape scintillator region, visible as tail of *n*-Gd energy peak.



Use variations in energy peaks to constrain <u>relative</u> efficiency.



- Efficiency variation estimated at 0.12% based on 0.5% energy scale uncertainty
- Motivation for 3-zone design

#### **Gd Capture Ratio**



Am-C neutron capture time to constrain uncertainty in relative H/Gd capture efficiency to < 0.1%between detectors.

#### **Side-by-side Comparison of 2 ADs**



Powerful demonstration of detector identicality and control of systematics

arXiv:1202.6181

#### Antineutrino Rate vs. Time



Detected rate tracks with reactor fuel cycle!

#### Predicted rate: (in figure)

- Assumes no oscillation.
- Normalization is determined by fit to data.

#### **Near-Far Site Prompt Positron Spectra**



#### **Background Summary**

|                     |   | Background    | Near   | Far    | Fractional<br>Accuracy (%) | Control               |
|---------------------|---|---------------|--------|--------|----------------------------|-----------------------|
| Internal Cosmogenic | _ | Accidental    | ~1.4 % | ~4.5 % | <1%                        | Use data              |
|                     |   | Fast Neutrons | ~0.1%  | ~0.06% | <100%                      | Use data to constrain |
|                     |   | Li9/He8       | ~0.4%  | ~0.2%  | <70%                       | Use data to constrain |
|                     |   | Am-C          | ~0.03% | ~0.3%  | 100%                       | Data/MC<br>combined   |
|                     |   | (alpha, n)    | ~0.01% | ~0.04% | <70%                       | Data/MC<br>combined   |

Backgrounds are small, and under control using real data

## **Uncertainty Summary**

|                               |            |                         |         | For near/far oscillation, only |  |  |  |
|-------------------------------|------------|-------------------------|---------|--------------------------------|--|--|--|
|                               | Dete       | ctor                    |         | uncorrelated uncertainties     |  |  |  |
|                               | Efficiency | Correlated Uncorrelated |         | are used                       |  |  |  |
| Target Protons                |            | 0.47%                   | 0.03%   |                                |  |  |  |
| Flasher cut                   | 99.98%     | 0.01%                   | 0.01%   |                                |  |  |  |
| Delayed energy cut            | 90.9%      | 0.6% 0.12%              |         |                                |  |  |  |
| Prompt energy cut             | 99.88%     | 0.10%                   | 0.01%   |                                |  |  |  |
| Multiplicity cut              |            | 0.02%                   | < 0.01% |                                |  |  |  |
| Capture time cut              | 98.6%      | 0.12%                   | 0.01%   | Largest systematics are        |  |  |  |
| Gd capture ratio              | 83.8%      | 0.8%                    | <0.1%   | much smaller than far          |  |  |  |
| Spill-in                      | 105.0%     | 1.5%                    | 0.02%   | site statistics (~1%)          |  |  |  |
| Livetime                      | 100.0%     | 0.002%                  | < 0.01% |                                |  |  |  |
| Combined                      | 78.8%      | 1.9%                    | 0.2%    |                                |  |  |  |
| Reactor                       |            |                         |         |                                |  |  |  |
| Correlate                     | d          | Uncorrelated            |         |                                |  |  |  |
| Energy/fission                | 0.2%       | Power                   | 0.5%    | Influence of uncorrelated      |  |  |  |
| $\overline{\nu}_{e}$ /fission | 3%         | Fission fraction 0.6%   |         | reactor systematics            |  |  |  |
|                               |            | Spent fuel              | 0.3%    | reduced by far vs. near        |  |  |  |
| Combined                      | 3%         | Combined 0.8%           |         | measurement.                   |  |  |  |

#### Far vs. Near Comparison



$$R = \frac{Far_{measured}}{Far_{expected}}$$

 $= 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$ 

Recall: R ~1-0.6sin<sup>2</sup>2 $\theta_{13}$  @ Daya Bay Far<sub>expected</sub> predicted from near sites

Clear observation of far site deficit relative to near

Spectral distortion consistent with oscillation\*.

\*Caveat: Spectral systematics not fully studied.  $\theta_{13}$  value from shape analysis is not recommended at this point.

#### **Rate Analysis**



## Summary of All Existing $\theta_{13}$ Measurements





M. Tórtola, et al., arXiv:1205.4018

Non-zero  $sin^2\theta_{13}$  at 8  $\sigma$ 

## Implications



#### **Forthcoming from Daya Bay**

We already have

- $\sin^2 2\theta_{13} = 0.092$
- $\pm$  0.016 (stat)
- $\pm$  0.005 (syst)

- More precise rate analysis (update 6 AD rate analysis this summer)
- Extensive calibration program this summer for spectrum analysis
- 8 detector data taking after summer, with ultimate precision of <0.01 (90% C. L.) on sin<sup>2</sup>2θ<sub>13</sub>
- Precise near site reactor spectrum measurement

# Backup

#### **Reactor Neutrino "Anomaly"**



A near-far relative measurement of reactor neutrino disappearance remains to be an unambiguous measurement of  $\theta_{13}$ 

# Background: Accidentals



|                          | EH1-AD1   | EH1-AD2   | EH2-AD1   | EH3-AD1   | EH3-AD2   | EH3-AD3   |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Accidental<br>rate(/day) | 9.82±0.06 | 9.88±0.06 | 7.67±0.05 | 3.29±0.03 | 3.33±0.03 | 3.12±0.03 |
| B/S                      | 1.37%     | 1.38%     | 1.44%     | 4.58%     | 4.77%     | 4.43%     |

- Cross checked with Off-window & Distance between prompt-delay pair
- Consistent to 1%

# Background: β-n decay

#### β-n decay:

- Prompt: β-decay
- Delayed: neutron capture



Basic technique: use time-since-muon fits



- Long-lived
- Mimic antineutrino signal

<sup>9</sup>Li: T<sub>1/2</sub> = 178 ms, Q = 13. 6 MeV

<sup>8</sup>He: τ<sub>1/2</sub> = 119 ms, Q = 10.6 MeV

Lower muon visible energy: impose neutrongenerating requirements to muons



Analysis muon veto cuts control B/S to ~ $0.4\pm0.2\%$ .

# Background: Fast neutrons

#### **Fast Neutrons:**

Energetic neutrons produced by cosmic rays<sup>3</sup> (inside and outside of muon veto system)

#### Mimics antineutrino (IBD) signal:

- Prompt: Neutron collides/stops in target
- Delayed: Neutron captures on Gd

Analysis muon veto cuts control B/S to 0.06% (0.1%) of far (near) signal.

Agrees with alternative method: combined tagged fast neutrons ×muon veto inefficiency (water neutrons) and Monte Carlo (rock neutrons)



# Background: ${}^{13}C(\alpha,n){}^{16}O$

| <sup>13</sup> C (α, n) <sup>16</sup> O                     | 1.1% natural abundance <sup>13</sup> C                   |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| → n + p                                                    | → n + p 1                                                |  |  |  |  |
| └→ n + <sup>12</sup> (                                     | $n + {}^{12}C^*(4.4 \text{ MeV})$                        |  |  |  |  |
|                                                            | $\downarrow$ <sup>12</sup> C + $\Upsilon$ <sup>(2)</sup> |  |  |  |  |
| <sup>13</sup> C (α, n) <sup>16</sup> O*(6.05 MeV)          |                                                          |  |  |  |  |
|                                                            | ) + Y <sub>3</sub>                                       |  |  |  |  |
| <sup>13</sup> C (α, n) <sup>16</sup> O*(6.13 MeV)          |                                                          |  |  |  |  |
| $\rightarrow {}^{16}\text{O} + \text{e}^+ + \text{e}^-  4$ |                                                          |  |  |  |  |
| Example alpha                                              | 2381 232Th 2351 210Po                                    |  |  |  |  |

0.05

1.2

1.4

Potential alpha source: <sup>238</sup>U, <sup>232</sup>Th, <sup>235</sup>U, <sup>210</sup>Po:

Each of them are <u>measured</u> insitu:

- U&Th: cascading decay of Bi(or Rn) – Po – Pb
- <sup>210</sup>Po: spectrum fitting

Combining ( $\alpha$ ,n) cross-section, correlated background rate is determined.

Near Site: 0.04+-0.02 per day,B/S  $(0.006 \pm 0.004)\%$ Far Site: 0.03+-0.02 per day,B/S  $(0.04 \pm 0.02)\%$ 

10

rate in AD1

Bq

## Background: <sup>241</sup>Am-<sup>13</sup>C neutrons



Weak (0.5Hz) neutron source in ACU can mimic IBD via inelastic scattering and capture on iron.
Internal background: can not veto



#### Constrain far site B/S to 0.3 $\pm$ 0.3%:

- Measure uncorrelated gamma rays from ACU in data (agreed very well with Monte Carlo)

- Estimate ratio of correlated/uncorrelated rate using Monte Carlo

- Assume 100% uncertainty from simulation

# **Reactor Flux Expectation**

#### Antineutrino flux is estimated for each reactor core

