
Testing of several distributed
file-system (HadoopFS,

CEPH and GlusterFS) for
supporting the HEP

experiments analisys.

Giacinto DONVITO
INFN-Bari

1

Agenda
•  Introduction on the objective of the test

activities

•  HadoopFS

•  GlusterFS

•  CEPH

•  Tests and results

•  Conclusion and future works
2

Introduction on the objective of
the test activities

•  The aim of the activity is to verify:
– Performance
– Reliability
– Features

•  Considering solutions that provides software
redundancy
– A site could use commodity hardware to achieving

high level of data availability
•  The scalability should be guaranteed at the order

of few PetaByte
3

Introduction on the objective of
the test activities

•  The focus is to serve typical Tier2/Tier3 sites
for LHC experiments
– Supporting interactive usage

– Running data analysis

– Supporting SRM, gridftp, Xrootd

– Being prepared for the new cloud storage
techniques

•  Open Source solutions
4

HadoopFS

•  Apache Hadoop Distributed File System:
– Open-source
– Developed in Java
– Large dataset
– Fault tolerant
– Commodity hardware
– High throughput
– Scalable
– Rack awareness

5

HadoopFS

6

HadoopFS

•  "The primary objective of HDFS is to store
data reliably even in the presence of
failures" (Hadoop documentation)
– File are split in chunk (default 64MB)

•  dfs.blocksize

– Placement policy (default):
•  3 replicas

–  1 replica in the local rack
–  2 replicas in the remote rack

•  dfs.replication
7

HadoopFS functionality test

•  We have executed several test to check the
behavior at several types of failures:
– Metadata failures

•  Client retry, active-standby namenode

– Datanode failures:
•  During write operation, during read operation, in case of data

corruption, mis-replicated blocks, under and over replicated
blocks

•  We always succeeded to fulfill the expected
behavior and no (un-expected) data-loss were
registered

8

HadoopFS

9

Data Corruption	

Rack	
 2	

Rack	
 1	

Mis-replicated blocks

HadoopFS: our development

•  One Replica Policy
– 1 replica per rack

•  Increasing the reliability

•  Increasing the available bandwidth for read
operation

10

HadoopFS: our development

•  Hierarchical Policy
–  It is able to exploit a geographically distributed

infrastructure
–  2 replicas in the source site in 2 different racks

•  The data will survive also to the loss of a
complete site

11

HadoopFS pros&cons
•  MapReduce
•  Dynamic self-healing
•  Great Scalability

–  Already tested in few big Tier2 in LHC and many
companies

•  Web monitoring interface
•  Support for SRM (Bestman) and gridftp/xrootd

(Nebraska)
•  Non strictly-posix compliance

–  Fuse based
•  No support for new cloud storage technologies 12

GlusterFS
•  OpenSource solution acquired by RedHat
•  Could be used both with disk in the WN and with standard

infrastructures based on disk servers (SAN/DAS)
•  Written in C under GPLv3
•  Posix compliance
•  Exploit NFS protocol
•  Available on many platforms (RedHat, Debian, MacOS,

NetBSD, OpenSolaris)
•  Support also new storage cloud technologies (Block

Storage, Object Storage, etc)
–  It is based on Swift (OpenSource Object Storage developed within

OpenStack framework)
13

14

•  Working behavior:
–  The client exploit a FUSE module to access file and implement

advanced policy (Distribute/Stripe/Replica, etc)

•  The client and
server could exploit
both TCP/IP and
infiniband
connections

•  The server hosts
data on standard
file-systems (ext4,
xfs, etc)

GlusterFS

15

'&��	
��,���
		
����������	
�����
��
��-����
�

�>

=�	

5�9��
�
���	��
��
���	�
��	��)�
�1�+	
���	���
���	�)	�"�����)�	
���
��#���"��	��
���	"
��+��

����)	�"��(������"� �
���$
������5�=.�/$��������+����
��2�+	
�������
$

,�/��'�
�	
����	�
�
��:
��
"�	
��-����
�
��
�����
����#������	��)�
�
�
���
�������#
	

�
����#�����1
�#9
��"�����#��
��
$��	
�1�
��
�
���
 ��	�

�	�����
��
�
�����
����#������	��)�
��"��������#	"#�

�"���"��
	")�"�
�(��
�����
���
���
�����
�##�

�	+���
����
���+���
��"����
+	
)�"#���
�#
���#��$�!"����
�
����
� �#	"+���
���	"�	+����
��	��)������
�
�
���	
����	"���+	
�5�������#��(
9�	��
$

=�	

4���"�)1�
�	+�1
�#9
�
�	����1����)��������	+�����
����#����#	�"���"��
�
����#	�"��+	
���
�
����

����#������	��)�$

����
��;$�$�!���
�
���	"�	+�����
����������#�����<	��)�

+��"�
�	
����	�
�
���
��
"�	
�������

�$ �
��������
�
����
�	
�����		��#	"
�
��"��	+�����
�	
����
�
��

������(����#)�
�
�������	��)�$

�	
�)	
���"+	
)���	" �
���$
������7�-.�/)������$
�4
������:����
��$�����
�;���2$

'&��	
��,���
		
����������	
�����
��
��-����
�

��

����
��;$;$�!���
�
���	"�	+�����
�
�1����������#�����<	��)�

+��"�
�	
����
�	�
7�	
���
��
"�	
�������

�$ �
��������
�
����
�	
�����		���
���
#
�1�����
���
��"�$
������7�-.�/)������$
�4
������:����
�
$�����
�;���2$

�$ �
�����������
�
�1�����
����#������	��)�&

(���%��������%������
������� !"�#���-��	���
�$!%�&/�-��
��	����-��	�.
�
�
�.���	0�
�
//������'�$(���

�	
��@�)��� �+	�
�"	�����
�
�1�����%
����#����*��	��)��(�������(�(���)�

	
&

3������
�������
���
��
��
��?�����
��
������4����������������
��
��9B
�����
��
�49B
��4
��
��
�69B
��6��
��
�79B
��7
"�
����������
��?�����
������

������
�����
5�
��
���������
������
�������
���
����

�	
��@�)��� ��	�#
�������
�@�"	�����
�
�1�����%
����#����*��	��)��(�������(�(���)�

	
&

3������
�������
���
��
��
��?�����
��
������4����������������
��
��9B
�����
��
�49B
��4
��
��
�69B
��6��
��
�79B
��7��
��
�;9B
��;��
��
�@9B
��@
"�
����������
��?�����
������

������
�����
5�
��
���������
������
�������
���
����

!+������
�"
�	
��������
�"	��
��#�+��� �������
��
����
�������+����$�S	��#�"���
	�
���������	"���	���	"

�+�
�6��
�� �
�#���
�����$���	(�	
�����$
�F�#�$��	
�)	
���"+	
)���	" �
���$
������9�-.�/:�����
+����
�<������2

'&��	
��,���
		
����������	
�����
��
��-����
�

��

����
��;$�$�!���
�
���	"�	+��������#�����<	��)�

+��"�
�	
����
��
"�	
�������

�$ �
��������
�
����
�	
�����		���
���
#
�1�����
���
��"�$
������7�-.�/)������$
�4
������:����
�
$�����
�;���2$

�$ �
���������
����#������	��)�&

(���%��������%������
������� !"�#���-��	���
�$!%�&/�-��
��	����-��	�.
�
�
�.���	0�
�
//������'�$(���

�	
��@�)��� ��	�#
�������
����#������	��)��(�����(�
�	
����
�
��

&

3������
�������
���
��
��
��?�����
��
������4����������������
��
��9B
�����
��
�49B
��4
"�
����������
��?�����
������

������
�����
5�
��
���������
������
�������
���
����

!+������
�"
�	
��������
�"	��
��#�+��� �������
��
����
�������+����$�S	��#�"���
	�
���������	"���	���	"

�+�
�6��
�� �
�#���
�����$���	(�	
�����$
�F�#�$��	
�)	
���"+	
)���	" �
���$
������9�-.�/:�����
+����
�<������2

=�	

5�9��
�
���	��
��
���	�
��	��)�
�1�+	
���	���
���	�)	�"�����)�	
���
��#���"��	��
���	"
��+��

����)	�"��(������"� �
���$
������5�=.�/$��������+����
��2�+	
�������
$

,����'�
�	
����	�
�
��-����
�
��
������	��)�
�
�
���
�������#
	

�1
�#9
��"������	��)�$��	
�1�
��
�
���
 ��	��
�	�����
��
�
����
�	��)�
�	"����"������#	"#�

�"#���"��
	")�"�
��##�

�"����
����
���+���
$

•  Working behavior:
–  Striped Volume
–  Replicated Volume
–  Distributed Volume
–  Striped Replicated Volume
–  Distributed Replicated Volume

GlusterFS

GlusterFS

16

•  POSIX ACL support over NFSv3

•  Virtual Machine Image Storage

•  qemu – libgfapi integration

•  improvements in performance for VM image hosting

•  Synchronous replication improvements

•  Distributed-replicated
and Striped-replicated
are very important in
the contest where
performance and data
availability is important

17

•  GlusterFS provides a geographical replication solution
•  Could be useful as disaster recovery solution

•  It is based on the paradigm of active-backup

GlusterFS

•  It is based on rsync

•  It is possible to
replicate the whole file-
system or a part of it

•  It could be used also
from one site to
multiple instances of
GlusterFS on different
sites

Glusterfs pros&cons

•  Easy to install and configure
•  Fully posix compliance
•  Many available configuration
•  Great performance
•  Provides interesting cloud storage solutions
•  Some instabilities and data loss in some

specific situations
•  There are no many scalability reports beyond

petabyte
18

CEPH file-system
•  Development started in 2009
•  Now it is acquired by a company (Inktank) also if it is

still an completely OpenSource projects
•  It is integrated by default in the Linux Kernel since

2.6.34 release (may 2010)
•  It could use, although not already at “production

level”, BTRFS (B-tree fle system) as backend
–  Several interesting features (Raid0/1, and soon Raid5/6,

data deduplication, etc) implemented at software level

19

CEPH file-system
•  Designed to be scalable and fault-tolerant

–  In order to support >10’000 disk server
–  Up to 128 metadata server (could serve up to 250kops/s aggregate)

•  CEPH can provide three different storage interfaces: Posix
(both at kernel level and using fuse), Block and Object
storage

•  Several IaaS cloud platforms (i.e.: OpenStack, CloudStack)
officially supports CEPH to provides Block Storage solution

•  The suggested configuration do not require/suggest the use of
any hardware raid: the data availability is implemented at
software level

20

•  The data distribution is based on an hash function
–  No query needed to know the location of a given file

•  This means that the mapping is “unstable”:
–  Adding a disk server, mean that the whole cluster need to

reshuffling the location of the data
•  It is possible to define “failure domain” at the level of: disk,

server, rack

21

CEPH file-system

9

Ceph data placement

� Files striped over objects
� 4 MB objects by default

� Objects mapped to placement
groups (PGs)

� pgid = hash(object) & mask

� PGs mapped to sets of OSDs
� crush(cluster, rule, pgid) = [osd2, osd3]

� ~100 PGs per node

� Pseudo-random, statistically uniform
distribution

…

… … … …

OSDs
(grouped by
 failure domain)

Objects

PGs

…File

� Fast– O(log n) calculation, no lookups

� Reliable– replicas span failure domains

� Stable– adding/removing OSDs moves
few PGs

•  Data placement rules could be
customized:
–  “tre different copies of the same

file in three different racks”
•  All the datanodes knows the exact

location of all the files in the cluster

•  Monitor: manages the heartbeats among nodes
•  MDS: manages l’I/O on metadata
•  OSD: contains the objects
•  The client will interact with all the three services
•  A 10 node cluster will be composed by:

–  3 monitor node
–  3 MDS node
–  7 OSD node

22

6

A simple example

� fd=open(”/foo/bar”, O_RDONLY)
� Client: requests open from MDS

� MDS: reads directory /foo from object store

� MDS: issues capability for file content

� read(fd, buf, 1024)
� Client: reads data from object store

� close(fd)
� Client: relinquishes capability to MDS

� MDS out of I/O path

� Object locations are well known–calculated
from object name

MDS Cluster

Object Store

Client

CEPH file-system

23

CEPH file-system
•  The three storage interfaces (posix, block and object) are

different gateways on the same objects APIs
•  The object could be stored also “striped” in order to increase

the performances
–  Object Size, Stripe Width, Stripe Count

•  Data Scrubbing: it is possible to periodically check the data
consistency (to avoid inconsistencies between data and
metadata, and or data corruptions)

27

Failure recovery

� Nodes quickly recover
� 15 seconds—unresponsive node declared dead
� 5 seconds—recovery

� Subtree partitioning limits effect of individual failures on rest of cluster

28

Metadata scaling

� Up to 128 MDS nodes, and 250,000 metadata ops/second
� I/O rates of potentially many terabytes/second
� File systems containing many petabytes of data

24

CEPH functionalities test
•  The “quorum” concept is used for each critical

service (there should be odds numbers of instances):
–  If 2 over 3 services are active the client could read and write. Is only

one is active the client could only read

•  We verified the behaviour in case of failure of each
service:
–  The High Availability worked always as expected
–  We tested both failure in data and metadata services
–  Both using posix and RBD interfaces

•  We tested also the possibility to export the storage using
standard NFS protocols
–  It works quite well both using RBD and POSIX interface

•  Was very unstable using kernel interface

25

CEPH RBD
•  CEPH RBD features:

–  Thinly provisioned
–  Resizable images
–  Image import/export
–  Image copy or rename
–  Read-only snapshots
–  Revert to snapshots
–  Ability to mount with Linux or QEMU KVM clients

•  In OpenStack it is possible to use CEPH both as device in
Cinder (Block storage server) and for hosting virtual images in
Glance (Image Service)

•  CEPH provides an Object Storage solution that has interfaces
compatible with both S3 (Amazon) and Swift (OpenStack)

CEPH Performance test

0,00	

10,00	

20,00	

30,00	

40,00	

50,00	

60,00	

70,00	

M
B/
s	

BS	

Test	
 Performance	
 -­‐	
 Wri5ng	

CephFS	

CephFS	
 with	
 NFS	

CephFuse	

CephFuse	
 with	
 NFS	

CephRBD	

CephRBD	
 with	
 NFS	

0,00	

20,00	

40,00	

60,00	

80,00	

100,00	

120,00	

140,00	

M
B/
s	

BS	

Test	
 Performance	
 -­‐	
 Reading	

CephFS	

CephFS	
 with	
 NFS	

CephFuse	

CephFuse	
 with	
 NFS	

CephRBD	

CephRBD	
 with	
 NFS	

BS

4K
128K
4M

26
4K	
 128K	
 4M

4K	
 128K	
 4M

Virtual	
 Machine	

CEPH pros&cons

•  Complete storage solution (supports all the
storage interfaces: posix, object, block)

•  Great scalability
•  Fault-tolerant solution
•  Difficult to install and configure
•  Performance issues
•  Some instabilities while under heavy load

27

HDFS v2 CDH 4.1.1 (by USCMS
Nebraska)

24	
 Threads	
 36	
 Threads	

Ini5al	
 Write	
 239.72	

Re-­‐write	

Random	
 Write	

Ini5al	
 Read	
 155.18	
 193.65	

Re-­‐read	
 151.33	
 207.43	

Random	
 Read	
 29.06	
 39.98	

MB/s	

●  20 datanodes, 1 namenode
●  Chunk size: 128MB, Rdbuffer: 128MB, Big_writes active

●  # iozone -r 128k -i 0 -i 1 -i 2 -t 24/36 -s 10G

HDFS – 24 threads

155*20	
 =	
 3.1GByte/s	

HDFS – 36 threads

193*20	
 =	
 3.8GByte/s	

Ceph Cuttlefish (0.61)

31

●  3 Mon, 1 Mds, 120 osd (6osd * 20nodi)
●  On all the nodes (SLC6)
○  # iozone -r 128k -i 0 -i 1 -i 2 -t 24 -s 10G

24	
 Threads	

Ini5al	
 Write	
 52.49	

Re-­‐write	
 54.05	

Random	
 Write	
 ERROR	

Read	
 95.38	

Re-­‐read	
 102.04	

Random	
 Read	
 ERROR	

95*20	
 =	
 1.9	
 GByte/s	

MB/s	

Ceph Cuttlefish (0.61)

95*20	
 =	
 1.9	
 GByte/
s	

Ceph Dumpling (0.67.3)

33

●  3 Mon, 1 Mds, 95 osd (5osd * 19nodi)
●  On all the nodes (SLC6)

○  # iozone -r 128k -i 0 -i 1 -i 2 -t 24 -s 10G

24	
 Threads	

Ini5al	
 Write	
 18.93	

Re-­‐write	
 19.31	

Random	
 Write	
 13.96	

Read	
 53.40	

Re-­‐read	
 57.29	

Random	
 Read	
 5.13	

MB/s	

53*19	
 =	
 1.0	
 GByte/s	

Ceph-Dev (0.70)

●  3 Mon, 1 Mds, 15 osd (5osd * 3nodi)
●  On all the nodes (Ubuntu 12.04)

○  # iozone -r 128k -i 0 -i 1 -i 2 -t 24 -s 10G

24	
 Threads	

Ini5al	
 Write	
 51,06	

Re-­‐write	
 60,05	

Random	
 Write	
 7,00	

Read	
 101,58	

Re-­‐read	
 133,61	

Random	
 Read	
 12,05	

MB/s	

Gluster v3.3

●  21 nodes, 6 brick per node
●  On all the nodes (SLC6)

○  # iozone -r 128k -i 0 -i 1 -i 2 -t 24 -s 10G

24	
 Threads	

Ini5al	
 Write	
 234.06	

Re-­‐write	
 311.75	

Random	
 Write	
 326.89	

Ini5al	
 Read	
 621.08	

Re-­‐read	
 662.92	

Random	
 Read	
 242.75	

621*21	
 =	
 13	
 GByte/s	

MB/s	

Gluster v3.3

10GByte/s	

Gluster v3.4
●  20 nodes, 6 brick per node
●  On all the nodes (SLC6)

○  # iozone -r 128k -i 0 -i 1 -i 2 -t 24 -s 10G

24	
 Threads	

Ini5al	
 Write	
 306.34	

Re-­‐write	
 406.90	

Random	
 Write	
 406.33	

Read	
 688.06	

Re-­‐read	
 711.46	

Random	
 Read	
 284.00	

688*20	
 =	
 13	
 GByte/s	

MB/s	

Gluster v3.4

10GByte/s	

Using dd for comparing them all

MB/s	
 HDFS	
 CEPH	
 CF	
 GLUSTER	

read	
 220.05	
 126.91	
 427.3	

write	
 275.27	
 64.71	
 268.57	

24	
 dd	
 in	
 parallel	
 -­‐	
 10GB	
 file	
 	
 -­‐	
 	
 bs	
 4M	

Average	
 per	
 single	
 host	
 (the	
 cluster	
 is	
 made	
 by	
 20	
 hosts)	

Conclusions …

•  We have tested, from a point of view of the
performance and functionalities, three of the
main known and diffused storage solution …

•  … trying to focus on the possibility not to use
an hardware raid solution

•  taking into account the new cloud storage
solution that are becoming more and more
interesting

40

Conclusions …
•  Hadoop

–  looks very stable, mature and scalable solution
– Not fully posix compliance and not the fastest

•  GlusterFS:
– Very fast, posix compliant, and easy to manage
– Maybe not as scalable as the others, still have few

reliability problems
•  CEPH:

–  Looks very scalable, complete and technological
advanced

– Still not very mature and stable, performance issues
41

… and future works

•  We will continue this activity of testing storage
solution in order to follow the quite fast evolution
in this field

•  In particular CEPH looks quite promising if/when
stability and performance issues will be solved.

•  The increasing interest in cloud storage solution
are forcing the developers to put effort in
providing both block and object storage solutions
together with the standard posix

42

People Involved

•  Domenico DIACONO (INFN-Bari)

•  Giacinto DONVITO (INFN-Bari)

•  Giovanni MARZULLI (GARR/INFN)

43

