

Top-Quark Physics at CMS

Chris Neu

University of Virginia

on behalf of the CMS Collaboration

Aspen 2011
"New Data from the Energy Frontier"
Aspen Center for Physics

13-18 February 2011

Top-quark physics is a crucial component of the CMS physics program.

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

gauge bosons

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

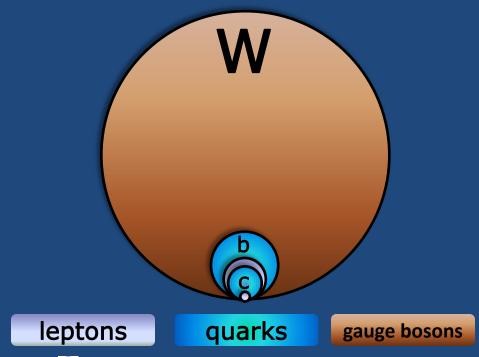
leptons

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

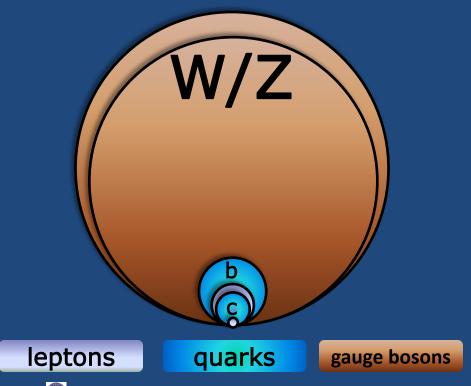
leptons

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

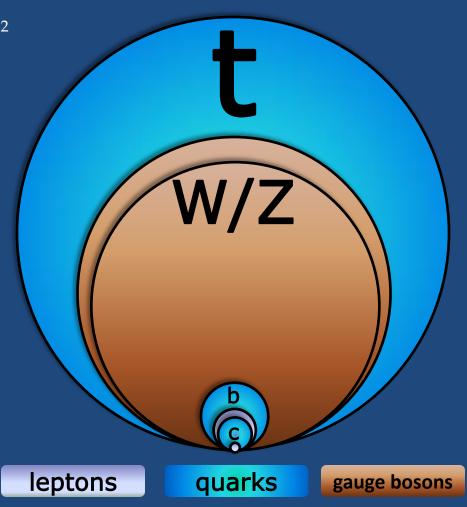
leptons



gauge bosons

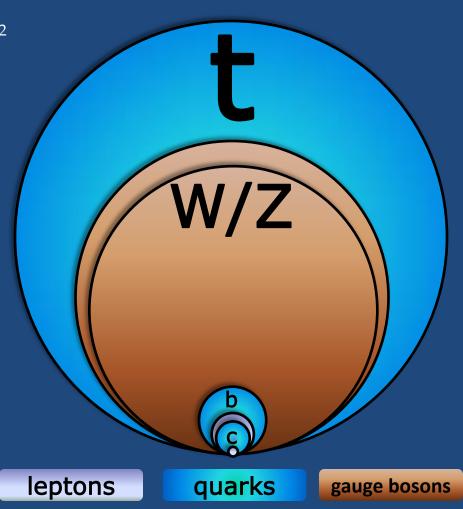


Christopher Neu


- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass

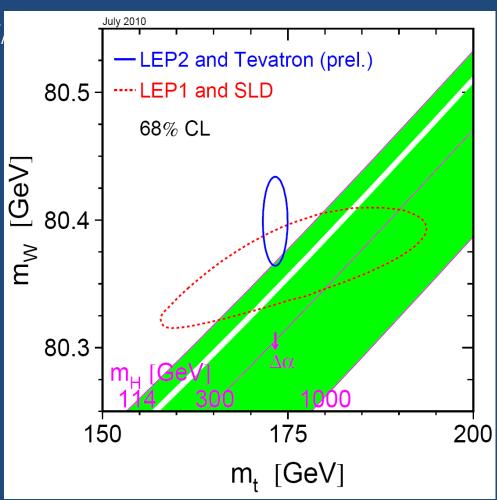
- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass: ~173 GeV/c²

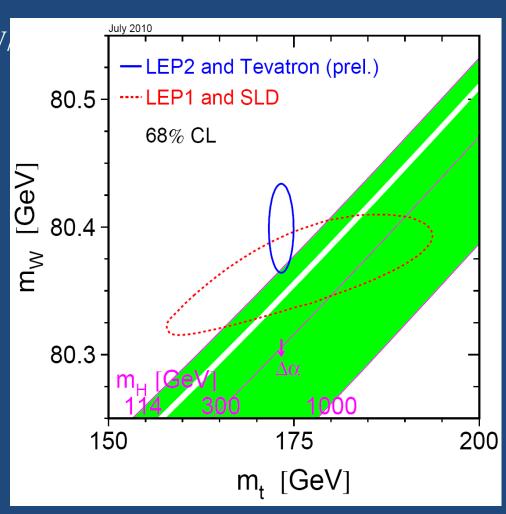


Top-quark physics is a crucial component of the CMS physics program.

Why is the top quark interesting?

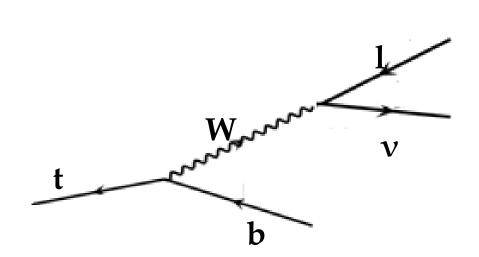
exceptionally large mass: ~173 GeV/c²


1 atom of Au : mass= \sim 180 GeV/c² 197 Au = 118 n, 79 p, 79 e⁻


- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass: ~173 GeV

1 atom of Au : mass= \sim 180 GeV/c² 197 Au = 118 n, 79 p, 79 e⁻

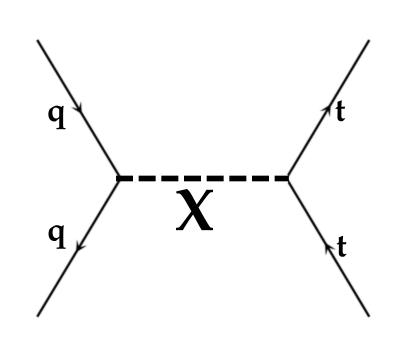
large coupling to the Higgs


- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass: ~173 GeV, 1 atom of Au : mass= ~180 GeV/ c^2 ¹⁹⁷Au = 118 n, 79 p, 79 e⁻
 - large coupling to the Higgs
 - large mass could indicate special role in EWSB

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass: ~173 GeV,

1 atom of Au : mass= \sim 180 GeV/c² 197 Au = 118 n, 79 p, 79 e⁻

- large coupling to the Higgs
- large mass could indicate special role in EWSB
- decays very rapidly glimpse of free quark


Allows for measurements of:

- mass
- spin
- electric charge
- etc

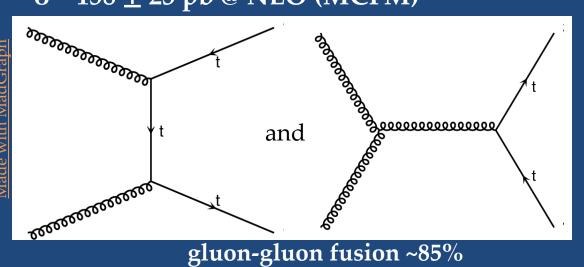
- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass: ~173 GeV,

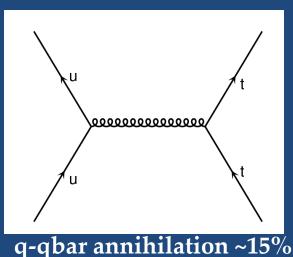
1 atom of Au : mass= \sim 180 GeV/c² 197 Au = 118 n, 79 p, 79 e⁻

- large coupling to the Higgs
- large mass could indicate special role in EWSB
- decays very rapidly glimpse of free quark
- many signatures of NP share the same signature or contain tops themselves

- Top-quark physics is a crucial component of the CMS physics program.
- Why is the top quark interesting?
 - exceptionally large mass: ~173 GeV

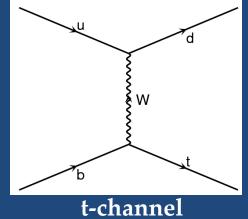
1 atom of Au : mass= \sim 180 GeV/ c^2 197 Au = 118 n, 79 p, 79 e⁻

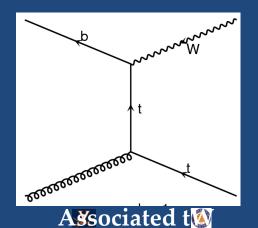

- large coupling to the Higgs
- large mass could indicate special role in EWSB
- decays very rapidly glimpse of free quark
- many signatures of NP share the same signature or contain tops themselves
- only observed at one facility by just two experiments -- significant opportunity for new physics

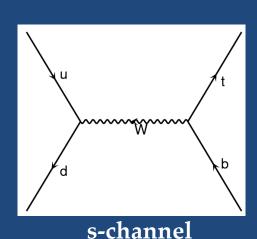


Top Quark Production

Top quarks at the LHC are produced mainly in top-antitop pairs: $\sigma = 158 \pm 23 \text{ pb}$ @ NLO (MCFM)

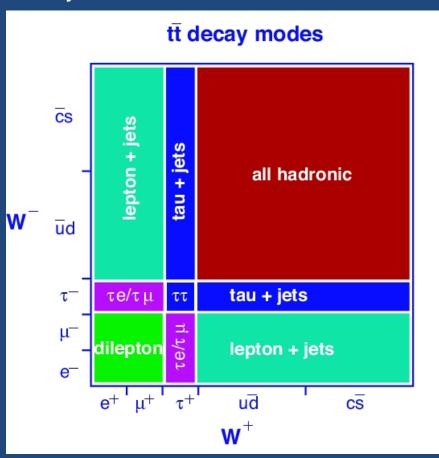

Focus of this talk

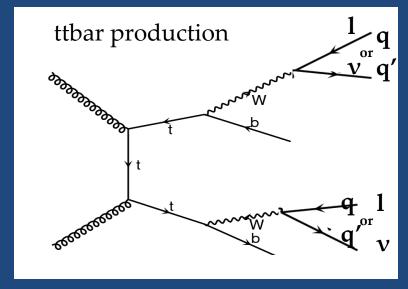




• EWK production of single top quarks is also possible:

 $\sigma = 79 \pm 3 \text{ pb}$

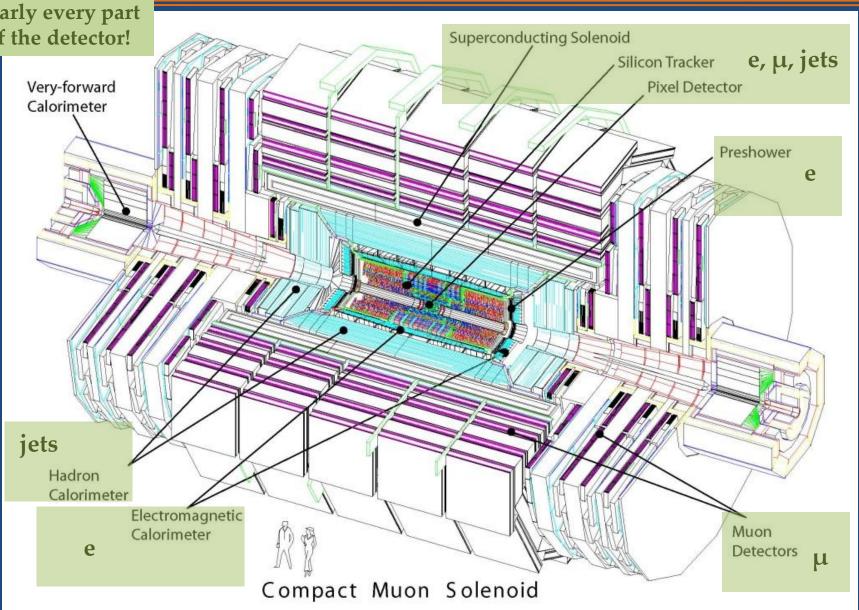




Top Quark Decay

- The top quark is predicted to decay nearly 100% of the time to a W and a b
- Top-quark pair events are categorized by decays of two W's

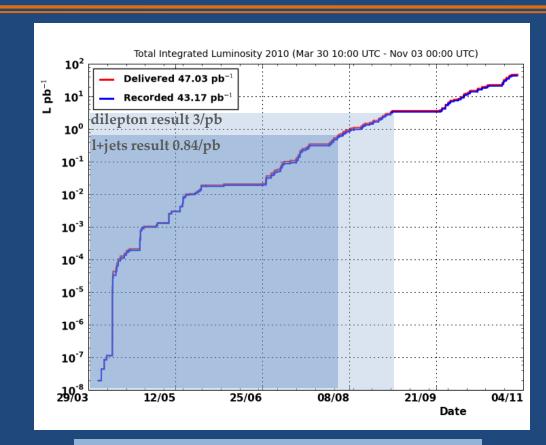
Dilepton channel:


- two isolated charged leptons (e or μ)
- MET
- two b-quark jets

Lepton + jets channel:

- one isolated e/μ, MET
- four jets, two from b's
- All-hadronic
- Tau channels

Top-quark physics touches nearly every part of the detector!


The CMS Experiment

The CMS Top-Quark Physics Program

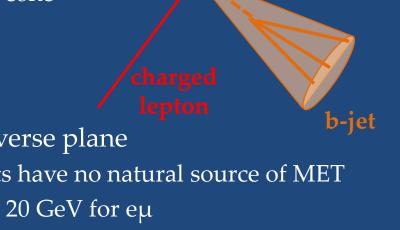
• Early focus:

- top-pair cross sections
- dilepton and l+jets channels
- Once established include other measureables:
 - differential cross sections
 - top mass
 - single top production
 - tau and all-had channels
 - charge, spin, BR, etc
- Goal: Know the signature
 very well use it for searches:
 - $X \rightarrow ttbar, X \rightarrow tb$
 - t' searches, $t' \rightarrow W b$
 - charged Higgs searches, $t \rightarrow H^+ b$
 - ttH production
 - Rare decays, FCNCs

Disclaimer:

Many new measurements in the approval process at CMS were not available in time for Aspen.

Today I will talk about our earliest dilepton and l+jets cross section analyses.

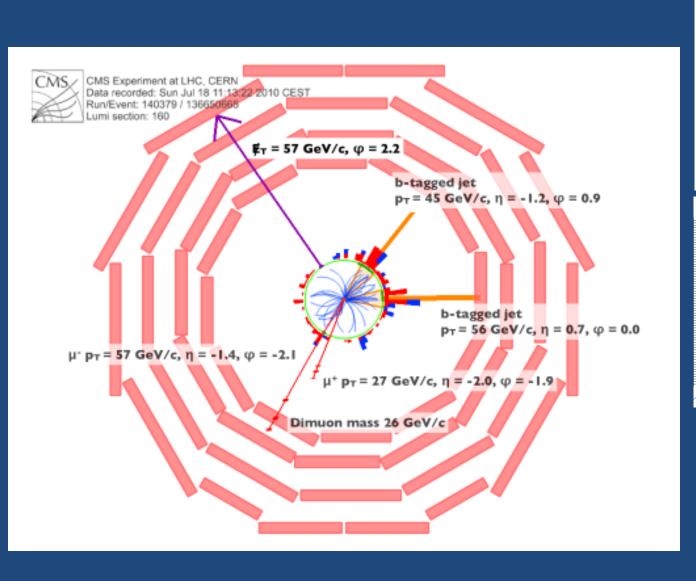

Cross Section Measurement in the Dilepton Channel

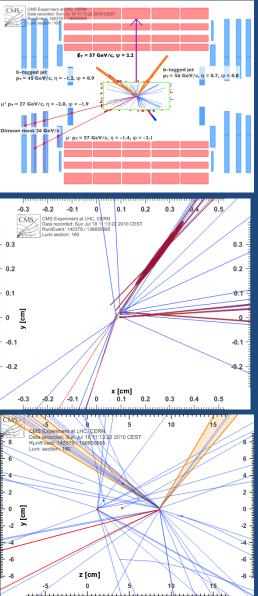
$$L_{int} = 3/pb$$

Top-Pair Cross Section: Dilepton Channel

- Three modes: ee, μμ, eμ
 Published in Physics Letters B, Volume 695, Issue 5.
- Event Selection:
 - **Trigger:** single electron (muon) with $p_T > 15$ (9) GeV/c
 - Electron and muon selection:
 - $p_T > 20 \text{ GeV/c}$ and $|\eta| < 2.5$
 - Relative Isolation: RelIso < 0.15 in R=0.3 cone
 - Two required, opposite charge
 - Z veto for ee, $\mu\mu$ modes:
 - If $|M_{11} M_{Z}| < 15$ GeV, veto event
 - Neutrinos: missing energy in the transverse plane
 - Major bkgs Drell-Yan and QCD multijets have no natural source of MET
 - MET > 30 GeV for ee, $\mu\mu$ modes, MET > 20 GeV for e μ
 - Calculated from calorimeter; corrected for muon, per-track response
 - **Jets:** Anti- k_T clustering with R = 0.5
 - At least two, with $p_T > 30 \text{ GeV/c}$ and $|\eta| < 2.5$

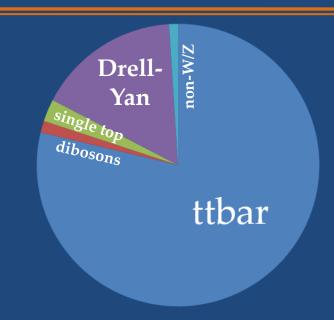
Corrected for uniformity in η , absolute response in p_T


No b-tagging required


for initial measurement.

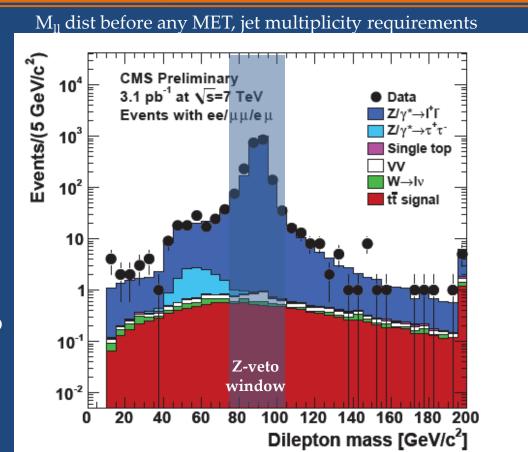
MET

b-jet


Dilepton Channel: Example Event

Dilepton Channel: Selected Sample

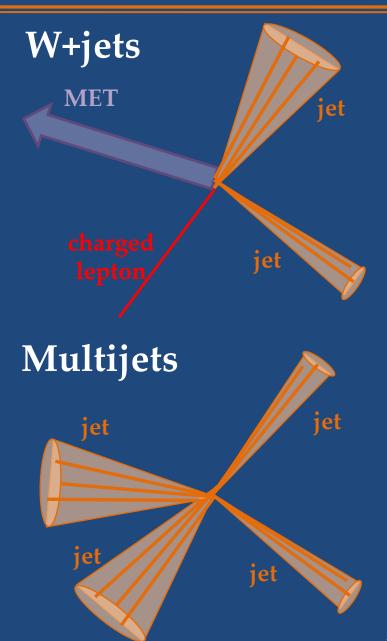
	$L_{int} = 3/pb$			
Source	III. 7 1	Number of events		
Expected $t\bar{t}$ (σ = 15	7.7 ± 1.5			
Dibosons (VV)	0.13 ± 0.07			
Single top (tW)		0.25 ± 0.13		
Drell-Yan Z/ $\gamma^\star ightarrow 7$	$\tau^+\tau^-$	0.18 ± 0.09		
Drell-Yan Z/ $\gamma^\star ightarrow \epsilon$	$e^{+}e^{-}$, $\mu^{+}\mu^{-}$	$1.4\pm0.5\pm0.5$		
Events with non-W	$0.1\pm0.5\pm0.3$			
Total backgrounds		2.1 ± 1.0		
Expected total, inclu	9.8 ± 1.8			
Data	11			



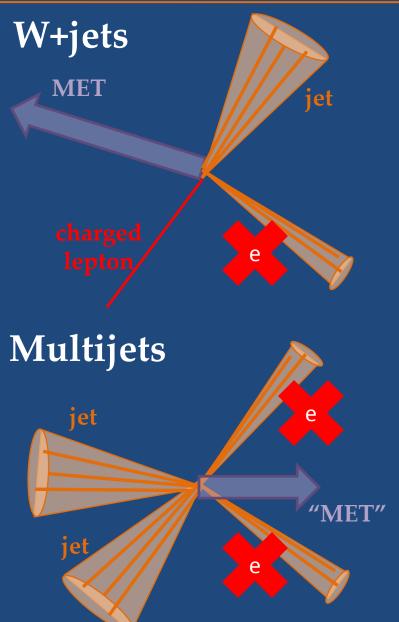
- **Signal estimate:** 7.7 events = 1.5 ee +1.7 μμ + 4.5 eμ
 - MadGraph + Pythia showering + GEANT detector simulation
 - NLO cross section from MCFM assumed: $\sigma = 158 \pm 23 \text{ pb}$ (scale and PDFs)
- Backgrounds:
 - MC estimates used for dibosons, single top, DY Z/γ^* →ττ
 - − Data-driven estimates for DY Z/γ^* →ee,µµ and non-W/Z
- Predicted purity of selected sample is very high: ~79%

Dilepton Channel: Drell-Yan Background

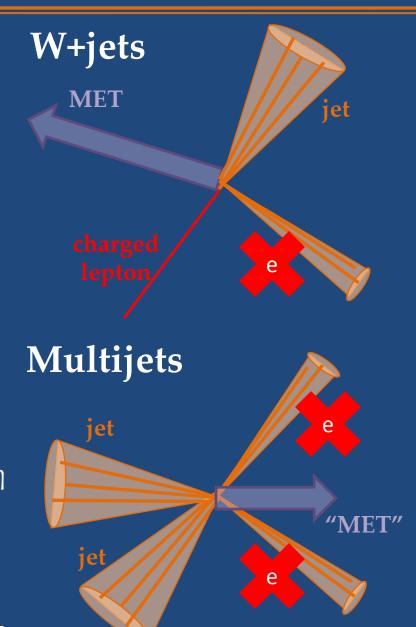
- Hard to model accurately
- Use the rejected data events from the Z-veto window
 - Subtract out the non-DY contribution in vetoed events
 - Use simulated DY events to determine ratio off-peak to near-peak
 - Scale DY component of Zvetoed events by this ratio
 - Result: estimate of residual
 DY contribution surviving
 in selected sample


Relative systematic uncertainty:

- 50% in each mode
- dominated by changes in yield for different selection criteria in jet multiplicity, MET


Dilepton Channel: Non-W/Z Background

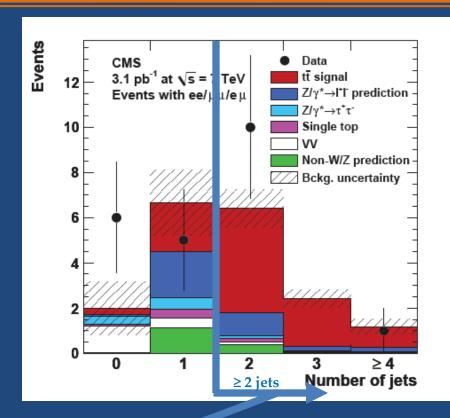
- Spurious dilepton event candidates can come from
 - W+jets:
 - leptonically decaying W with one jet faking the charged lepton
 - Multijets:
 - two jets fake the charged lepton ID, jet mismeasurement provides spurious MET


Dilepton Channel: Non-W/Z Background

- Spurious dilepton event candidates can come from
 - W+jets:
 - leptonically decaying W with one jet faking the charged lepton
 - Multijets:
 - two jets fake the charged lepton ID, jet mismeasurement provides spurious MET

Dilepton Channel: Non-W/Z Background

- Spurious dilepton event candidates can come from
 - W+jets:
 - leptonically decaying W with one jet faking the charged lepton
 - Multijets:
 - two jets fake the charged lepton ID, jet mismeasurement provides spurious MET
- Hard to model accurately
- Create superset of dilepton candidates in data – loosen lepton ID on both
- Use a multijet dominated data calibration sample, require one such loose lepton
- Determine tight-to-loose ratio, fnc of pT, η
- Apply to superset of dilepton candidates
 - W+jets: one lepton fails tight criteria
 - Multijets: both leptons fail tight criteria

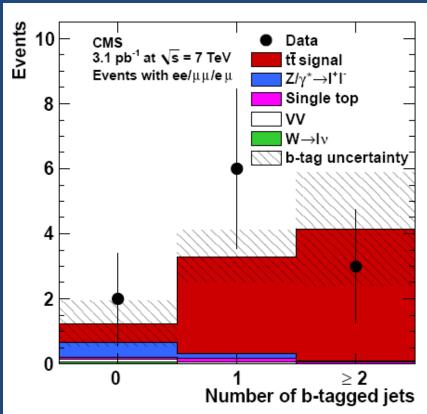

Dilepton Channel: Cross Section Results

Simple cut-and-count analysis

Source	Number of events
Expected t t	7.7 ± 1.5
Dibosons (VV)	0.13 ± 0.07
Single top (tW)	0.25 ± 0.13
Drell-Yan Z $/\gamma^\star ightarrow au^+ au^-$	0.18 ± 0.09
Drell-Yan Z/ $\gamma^\star ightarrow \mathrm{e^+ e^-}$, $\mu^+ \mu^-$	$1.4\pm0.5\pm0.5$
Events with non-W/Z leptons	$0.1\pm0.5\pm0.3$
Total backgrounds	2.1 ± 1.0
Expected total, including t t	9.8 ± 1.8
Data	11

• Systematics:

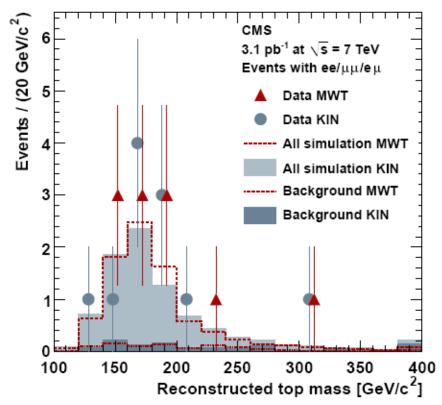
Source	all
Lepton selection	4.4%
Energy scale	3.7%
ISR/FSR	1%
Decay model	2%
Branching fraction	1.7%
Subtotal (no backgrounds, no luminosity)	6.4%
Backgrounds	11%
Total without luminosity	12%
Integrated luminosity	11%



Result:

$$\sigma(\text{ttbar}) = 194 \pm 72(\text{stat})$$

 $\pm 24(\text{syst}) \pm 21(\text{lumi}) \text{ pb}$



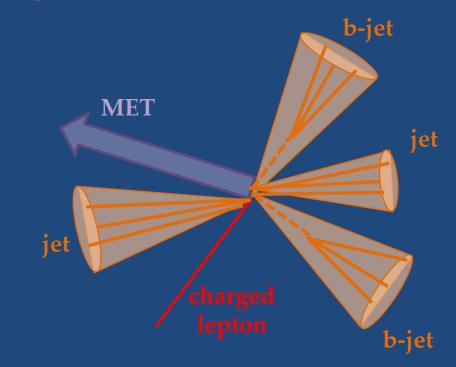
Dilepton Channel: Cross Checks

- Use track-counting algorithm
 - 80% efficient at 10% false-positive rate
- Good evidence for b-jets in sample

- Are selected events consistent with top-quark production?
- Two top mass techniques, one value returned per event
- Good evidence for top-quarks in Christopher Neu these events

Top Quark Production in the Lepton+Jets Channel

 $L_{int} = 0.84/pb$

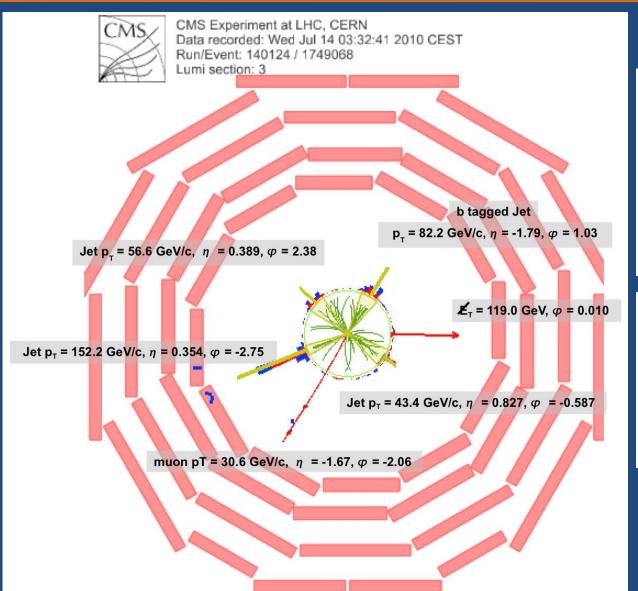

Top-Quark Pairs: Lepton+Jets Channel

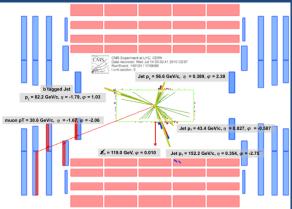
Dileptons

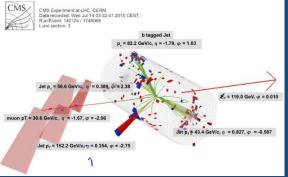
Tighter wrt

- Two modes: mu+jets and e+jets
- Event selection:
 - **Trigger:** single electron (muon) with $p_T > 15$ (9) GeV/c
 - Muon selection:
 - $p_T > 20 \text{ GeV/c}$ and $|\eta| < 2.1$
 - RelIso < 0.05 in R=0.3 cone
 - Electron selection:
 - $p_T > 30 \text{ GeV/c} \text{ and } |\eta| < 2.4$
 - RelIso < 0.10
 - Neutrinos:
 - No cut on MET
 - Prefer to reserve MET as a handle for estimating bkgds
 - **Jets:** Anti- k_T clustering with R = 0.5
 - Four expected, with $p_T > 30 \text{ GeV/c}$ and $|\eta| < 2.5$
 - Corrected for uniformity in η , absolute response in p_T^-

Not published – see TOP-10-004 in CDS.



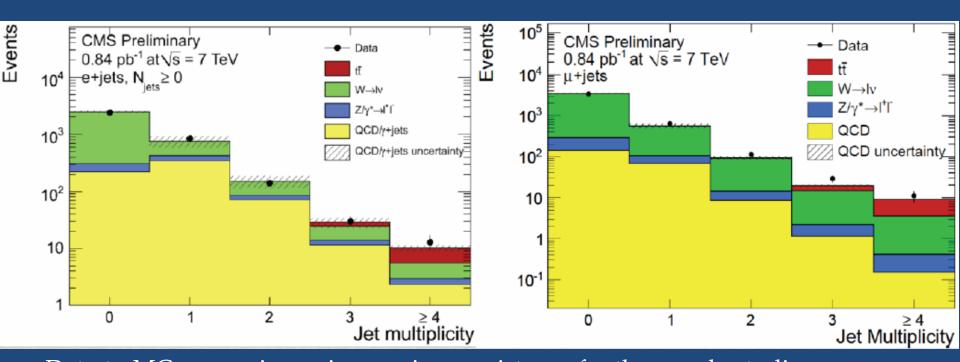



No b-tagging required

for initial studies.

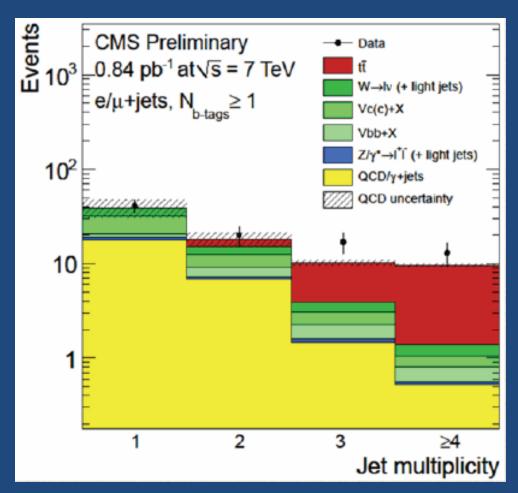
Lepton+Jets Channel: Example Event

Lepton+Jets Channel: Selected Sample


 $L_{int} = 0.84/pb$

	Jet multiplicity	tī	Single top	W+jets	Z+jets	QCD	ΣΜC	Data
3	N _{jets} ≥2	13 2	2.3 0.3	92 24	7.1 4.4	10 3	124 25	153
	N _{jets} ≥3	10 2	0.82 0.15	16 5	1.3 0.9	1.3 0.5	29 5	40
上	N _{jets} ≥4	5.6 1.4	0.24 0.06	3.1 1.2	0.25 0.18	0.15 0.07	9.3 1.9	11

	Jet multiplicity	tī	Single top	W+jets	Z+jets	QCD	ΣΜC	Data
3	N _{jets} ≥2	11 2	1.9 0.3	74 18	19 5	85 22	191 29	183
	N _{jets} ≥3	8.9 1.8	0.70 0.14	13 4	3.3 1.0	14 5	40 7	43
)	$N_{jets} \ge 3$ $N_{jets} \ge 4$	4.8 1.2	0.21 0.06	2.6 1.1	0.60 0.23	2.3 1.1	11 2	13


- MC-only predictions:
 - MadGraph+Pythia (ttbar, W/Z+jets) and Pythia (QCD w/ k = 2.0 and 50% error)
- Although 4 jets are expected...
 - 3-jet bin has not-insignificant amount of signal
 - 3-jet bin is valuable for pinning down W+jets and QCD backgrounds
- Data-driven estimate for QCD multijets is preferred and is implemented in the soonto-be approved results
- Predicted purity in ≥ 4 jet bin is $\sim 50\%$ chellently less than that of dileptons

Lepton+Jets Channel: Yields

- Data-to-MC comparison impressive consistency for these early studies
- Small backgrounds not included
- Error band reflects just the 50% error on the QCD normalization, completely MC-driven temporary for these early studies
- No fit or other signal extraction technique, so ttbar content exactly reflects the input cross section we used (158 pb, NLO)

Lepton+Jets Channel: With Tagging

Simple Secondary Vertex Algorithm ~55% efficiency with ~1% false positive rate

- Can examine the b-tagged jet content of this selected sample
- Flavor discrimination = need for more extensive V+HF samples
- Plotted here, the total jet multiplicity for events with 1 or more b-tagged jets
 - ttbar will favor the 3,≥4-jet bins
 - QCD, W+jets the 1,2-jet bins
- Combined e/µ+jets sample
- Necessarily ≥1 jet in all such events
- Good agreement once again

Summary and Outlook

- The CMS top-quark physics program got off to a great start in 2010
 - ICHEP: Establishment of presence of top quarks in our data sample
 - First measurement of the ttbar cross section at the LHC, using dileptons
 - Early studies of the lepton + jets channel encouraging as well
- This is only the beginning
 - A rich suite of measurements and searches is envisioned
 - Several new measurements using entire 2010 data sample will be available in the coming weeks
 - updated dilepton cross section
 - cross sections in the e/μ+jets modes, both with and without tagging
 - first official top-quark mass measurements
 - measurement of single top production cross section
 - searches for new physics exploiting the m_{ttbar} distribution
 - And then the abundant top samples expected in the 2011-12 run and beyond

Additional Material

Top Mass Measurement Techniques

- Two top mass measurement techniques
 - Consider ensemble of possible values of jet energies and MET near measured values, given their resolutions
 - Solutions for the kinematic equations describing dilepton ttbar events are solved for the ensemble of input values
 - Neutrinos ⇒ underconstrained system
 - Kinematic (KIN) method:
 - apply constraint on the longitudinal momentum of the tt system
 - assumption on longitudinal momentum has little impact on measured top mass
 - many possible top mass values produced in a given event most probable one is returned as the per-event top mass estimator
 - Matrix Weighting Technique (MWT):
 - Kinematic system is solved for a spectrum of possible top mass values
 - Weights are assigned based on the likelihood of each solution
 - The mass for which the sum of the weights of all solutions is maximized is used as the per-event mass estimator

