B leptonic decays

0

Koji Hara (KEK)

Flavor Physics and CP Violation

20-25 May 2012

• B→Iv

• B→II,vv

$B^+ \rightarrow I^+ \nu$ Introduction

• $B \rightarrow I_V$ decay proceed through W boson annihilation in the Standard Model

Decay rate simply related to B meson decay constant f_B and |V_{ub}|

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Taking |V_{ub}| value from b→ulv measurements, B→lv can be used for direct measurement of f_B
- Due to the helicity suppression $B \rightarrow \tau v$ has the largest branching fraction Using $f_B = 190 \pm 13$ MeV [HPQCD Collaboration, PRD80, 014503] and $|V_{ub}| = (3.89 \pm 0.44) \times 10^{-3}$ [PDG2011] SM Expected Br($B \rightarrow \tau v$) = (0.96 ± 0.25) × 10⁻⁴ \rightarrow Measurable at B factories: Belle and BaBar

• r_H factor common to all $B \rightarrow Iv$ modes

 \rightarrow Important to measure all B \rightarrow Iv modes

$B \rightarrow Iv$ Analysis Concepts

<u>Tag</u> B pair event by reconstructing one B meson
→ Provide pure single B event

Require <u>no</u> particle remains after removing products of tagging B and the particle(s) from signal decays

Tagging Methods Hadronic Tag

- Fully reconstruct in B→DX hadronic decays
- Tagging efficiency ~ 0.2 %
- P_{Bsig} measured
- Less background

- <u>Semileptonic Tag</u>
 - Reconstruct $B \rightarrow D^{(*)} I_V$
 - $E_B = E_{beam}$
 - Undetected neutrino mass ~ 0
 - Tagging efficiency ~ 1%
 - No P_{Bsig} measurement
 - More background

5

$B \rightarrow \tau v$ Signal side selection

- Recostruct signal candidate particles
 - $B \rightarrow \tau \nu$,
 - τ → Iνν, πν, ρν
- Require no particles remain in the event
 - No charged tracks, π^0
 - Extra energy in the EM calorimeter ~ 0
 - split-off showers created by Btag and Bsig particles
 - beam background hits

Belle Hadronic Tag $B \rightarrow \tau v$ Result

BaBar Hadronic Tag $B \rightarrow \tau v$ Result

 $\mathcal{B}(B \to \tau \nu) = [1.80^{+0.57}_{-0.54}(stat) \pm 0.26(syst)] \times 10^{-4}$

Preliminary [arxiv:1008.0104]

468 M BB

 3.3σ significance

Decay Mode	$\epsilon \times 10^{-4}$	Branching Fraction $(\times 10^{-4})$	Significance σ
$\tau^+ \to e^+ \nu \bar{\nu}$	2.73	$0.39\substack{+0.89\\-0.79}$	0.5
$\tau^+ \to \mu^+ \nu \bar{\nu}$	2.92	$1.23\substack{+0.89 \\ -0.80}$	1.6
$\tau^+ \to \pi^+ \nu$	1.55	$4.0^{+1.5}_{-1.3}$	3.3
$\tau^+ \to \rho^+ \nu$	0.85	$4.3^{+2.2}_{-1.9}$	2.6
combined	8.05	$1.80^{+0.57}_{-0.54}$	3.6

8

Belle Semileptonic Tag $B \rightarrow \tau v$ Result

Tag side

BaBar Semileptonic Tag $B \rightarrow \tau v$ Result

$B \rightarrow \tau v$ results and Charged Higgs constraint

Comparison with the CKM global fit

- "Tension" observed in $B \rightarrow \tau v$ sin2 ϕ_1 relation
- f_B uncertainty is canceled by Δm_d
- |V_{ub}| uncertainty cannot explain the tension

Improved $B \rightarrow \tau v$ measurement is crucial

Analysis Improvement at Belle

Improved Full-reconstruction Tagging [NIM A654, 432(2011)]

- More decay modes
- Sophisticated event selection by NeuroBayes (neural net)
- >2 statistical gain over previous tag

3.5 M B reconstructed in 772 M \overline{BB} data

Significant improvement using full Belle data (772 M \overline{BB}) with the new fullrecon-tag is expected.

$B \rightarrow \mu \nu$, ev inclusive tag

Signal signature

- Monochromatic lepton in the signal side
- Remaining particles (tag-side) is consistent with B decay

$B \rightarrow II, v\overline{v}$ Introduction

Neutral B meson decay to I⁺ via box or penguin annihilation

Branching fractions are highly suppressed in SM

$$\begin{array}{l} B(B^{0} \to e^{+}e^{-}) \sim 10^{-15} \\ B(B^{0} \to \mu^{+}\mu^{-}) \sim 10^{-10} \\ B(B^{0} \to \tau^{+}\tau^{-}) \sim 10^{-7} \\ B(B^{0} \to \nu \nu) \sim 0 \end{array}$$

$$Br \propto (m_{\rm l}/m_{\rm B})^2$$

- $B \rightarrow vv$ and $\tau\tau$ are only possible in B factories.
- Hadron collider (LHC, Tevatron) experiments have better sensitivity for $B \rightarrow ee$, $\mu\mu$ thanks to the large production cross section

 \rightarrow Talks by C. Guoming and S. Nicola for $B^0 \rightarrow \mu\mu$ and $B_S \rightarrow \mu\mu$

$B \rightarrow II$ beyond the SM

Br may be enhanced by New physics contribution

• To test the NP model, important to measure • B^0 and B_S , • ee $\mu\mu$, $\tau\tau$,

• invisible decays

$B \rightarrow e^+e^-$ search at CDF II

- Isolated e⁺e⁻ pair
- Decay vertex away from the primary vertex
- Reconstructed B trajectory points the primary vertex

• Belle and BaBar also reports <1.9x10⁻⁷ and < 1.13x10⁻⁷ and (90% CL) for $B^0 \rightarrow e^+e^-$

$B \rightarrow \tau \tau$ search at BaBar

- Tag side is reconstructed in hadronic decays
- Signal side is reconstructed in

 $τ^+τ^-$ → |νν/|νν, |νν/πν, πν/πν, ρν/ρν

- Neural net is used to separate background
- Signal is extracted using residual energy in EM calorimeter

$B \rightarrow$ invisible search at B factories

Tag-side B is reconstructed in hadronic (Belle) and Semileptonic (BaBar) decays

No particles remains in the event

Summary

Leptonic B decays are very sensitive to new physics

Some recent measurements at B factory and Hadron colliders reaches the expected the SM Br.

Constraining the new physics

• The results of full data set at Belle will come soon • Improved analysis of $B \rightarrow \tau v$ and $B \rightarrow I v$ is going on

 More interesting results will come in future from LHC and Belle II and SuperB