A first evidence of the CMSSM is appearing soon

SATO, Joe (Saitama University)

- based mainly on arXiv:1309.2067
- Y. Konishi, S. Ohta, J.S., T. Shimomura K. Sugai, M. Yamanaka
- Also, PRD 73 (2006) 055009, 76 (2007) 125023, 78 (2008) 055007,
 82 (2010) 115030, 84 (2011) 035008, D 86 (2012) 095024

1. Introduction

At this moment

- Higgs Doublet was found
- ✓ No New Physics @ LHC
- ☑ No New (Quark) Flavor Violation

Go beyond SM

SM works quite well

- Dark Matter candidate
- Baryon Asymmetry
- Lepton Flavor Violation among Neutrind
- ✓ Lithium Problem in Big-Bang Nucleosynthesis

1. Introduction

At this moment

- Higgs Doublet was found
- ☑ No New Physics @ LHC
- ☑ No New (Quark) Flavor Violation

Go beyond SM

SM works quite well

- Dark Matter candidate
- Baryon Asymmetry
- Lepton Flavor Violation among Neutrind
- Lithium Problem in Big-Bang Nucleosynthesis

Constrained minimal SUSY standard model (CMSSM) can solve them!? Keeping the good feature of SM

Which parameter region?

~DM abundance and LHC result

☑ Coannihilation region Griest, Seckel

DM and Stau: degenerate in mass

DM and Stau pair-annihilate at decoupling from thermal history to give appropriate abundance

☑ Imposing 125GeV Higgs, muon g-2 etc, tight degenerasy,

$$\delta m \equiv m_{\tilde{\tau}} - m_{\tilde{\chi}} < m_{\tau}$$

[L. Aparicio, D. Cerdeno, L. Ibanez, JHEP(2012)]

[M. Citron, J. Ellis, F.Luo, et al, PRD87(2013)]

DM abundance can be explained Coannihilation region

Very fortunately

Stau is long-lived at $\delta m < m_{\tau}$ since 2-body decay is kinematically prohibited

[T. Jittoh, J. S T. Shimomura, M.Yamanaka, PRD73 (2006)]

Can not decay into two body

Phase space suppression

Long-lived particle

long-lived stau in the coannihilation scenario

Lithium Problem can be solved

2.Li problem and a solution by long-lived stau

Theoretical prediction

$$(4.15^{+0.49}_{-0.45})\times10^{-10}$$

A. Coc, et al., astrophys. J. 600, 544(2004)

Observation

$$(1.26^{+0.29}_{-0.24})\times10^{-10}$$

P. Bonifacio, et al., astro-ph/0610245

Predicted⁷Li abundance ≠ observed⁷Li abundance

Solving the Li problem with stau

Key ingredient for solving the Li problem

Negative-charged stau can form a bound state with nuclei

Solving the Boltzmann Eq.

New processes

- Internal conversion in the bound state
- Stau catalyzed fusion
- Spallation process of nucleus in the bound state

Internal conversion

PRD76,78

Hadronic current

Closeness between stau and nucleus

Overlap of the wave function: <u>UP</u>

Interaction rate of hadronic current: UP

 $\overset{\sim}{\tau}$ does not form a bound state

No cancellation processes

Internal conversion rate

The lifetime of the stau-nucleus bound state

$$\tau_{\rm IC} = \frac{1}{|\psi|^2 \cdot (\sigma v)}$$

Wave function of the bound state

$$|\psi|^2 = \frac{1}{\pi a_{\rm nucl}^3}$$

$$|\psi|^2 = rac{1}{\pi a_{
m nucl}^3}$$
 $\left(\begin{array}{c} {
m nuclear\ radius} \\ a_{
m nucl} = (1.2 imes A^{1/3}) \end{array}\right)$

 \diamond (σv) is evaluated by using <u>ft-value</u>

$$(\sigma v) \propto (ft\text{-}value)^{-1}$$

ft-value of each processes

 $^{7}\text{Be} \rightarrow ^{7}\text{Li}$ • • • $ft = 10^{3.3} \text{ sec (experimental value)}$

 $^{7}\text{Li} \rightarrow ^{7}\text{He} \cdots \text{ similar to } ^{7}\text{Be} \rightarrow ^{7}\text{Li} \quad \text{(no experimental value)}$

Lifetime of bound state (s) $(\tilde{\tau}^{7} \text{Be}) \rightarrow \tilde{\chi}^{0} + \nu_{\tau} + {}^{7} \text{Li}$ 10⁻² 10⁻⁴ 10⁻⁶t $m_{^{7}\text{He}} - m_{^{7}\text{Li}} = 11.2 \text{ MeV}$ 104 $\tilde{\tau}(\tilde{\tau}^{7}\mathrm{Li}) \rightarrow \tilde{\chi}^{0} + \nu_{ au} + {}^{7}\mathrm{He}$ 10⁻⁴ 10⁻⁸[0.01 0.1 δm (GeV)

Interaction rate of internal conversion

Very short lifetime

Signifficant process for reducing ⁷Li abundance

Li destruction chain with internal conversion

Stau catalyzed fusion

[M. Pospelov, PRL. 98 (2007)]

Ineffective for reducing ⁷Li and ⁷Be

: stau can not weaken the barrieres of Li³⁺ and Be⁴⁺ sufficiently

Stau catalyzed fusion

Catalyzed BBN cause over production of ⁶Li

Constraint on stau life time

4 He spallation process PRD 84

Bound state formation via EM int.

$$\tilde{\tau} + {}^{4}\text{He} \rightarrow (\tilde{\tau}^{4}\text{He})$$

Spallation process

$$(\tilde{\tau}^4 \text{He}) \rightarrow \tilde{\chi}^0 + \nu_{\tau} + t + n$$

 $(\tilde{\tau}^4 \text{He}) \rightarrow \tilde{\chi}^0 + \nu_{\tau} + d + n + n$

$$(\tilde{\tau}^4 \text{He}) \rightarrow \tilde{\chi}^0 + \nu_{\tau} + p + n + n + n$$

Reaction rate $\Gamma((\tilde{\tau}^4 \text{He}) \to \tilde{\chi}_1^0 \nu_{\tau} \text{tn}) = |\psi|^2 \cdot \sigma v_{\text{tn}}$

Upper bound for lifetime from not to produce much t/d

Favored parameter space in MSSM

3. Requirement for Parameter Search

☑ Req 1: DM Abundance

$$0.089 < \Omega_{\rm DM} h^2 < 0.136$$
 [WMAP 9-year]

☑ Req.2: Higgs Mass

$$m_h = 125.0 \pm 3.0 \; [\text{GeV}]$$

Current Observation

$$m_h = 125.8 \pm 0.4 {
m (stat)} \pm 0.4 {
m (sys)} \ {
m [GeV]} \ {
m [CMS]}$$

$$m_h = 125.2 \pm 0.3 {
m (stat)} \pm 0.6 {
m (sys)} {
m [GeV]}$$
 [ATLAS]

Uncertainty of Public Code

~ 2GeV

☑ Req3: mass difference

$$\delta m = m_{\tilde{\tau}} - m_{\tilde{\chi}} \le 1 [\text{GeV}]$$

To form a bound state with Lithium

$$\delta m \leq 0.1 [\text{GeV}]$$

Uncertainty of Public Code

~ 2GeV

We have calculated the case <0.1GeV but there is no qualitative difference

☑ req4: Stau (and DM(Lightest Neutralino)) mass

$$339[\text{GeV}] \le m_{\tilde{\tau}} \le 450[\text{GeV}]$$

LHC bound

Strongly correlated with Number density of DM

DM abundance (fixed)
= number density × mass

Direct measurement at LHC

$$\bar{Y}_{\tilde{\tau}_1}^{\rm BBN} \gtrsim 1.0 \times 10^{-13} \ Y_{\tilde{\tau}_1} = n_{\tilde{\tau}_1}/s$$

We need many staus to destroy Be/Li

$$Y_{\tilde{\tau}_1}^{\text{BBN}} = \frac{Y_{\tilde{\chi}_1^0}^{\text{relic}}}{2(1 + e^{\delta m/T_f})}$$

Exchange process stau<->DM after coanihillation

$$\Omega_{\rm DM} h^2 \equiv \frac{Y_{\tilde{\chi}_1^0}^{\rm relic} s_0 m_{\rm DM} h^2}{\rho_c} \leq 0.136$$

Upper bound of DM abundance

$$m_{\tilde{\chi}_1^0} \lesssim \frac{\rho_c}{2s_0 h^2 (1 + e^{\delta m/T_f})} \frac{0.136}{1.0 \times 10^{-13}}$$

4. Result

☑ Numerical Analysis

DM abundance : microOMEGA with SPheno

Higgs mass : FyenHiggs

CMSSM spectrum: SPheno

All other outputs: SPheno

4. Result

$4.1.A_0$ - m_0 plane

☑ Almost in a line

$$m_0 = -5.5 \times 10^{-3} A_0 \tan \beta + b$$

 $165[\text{GeV}] \lesssim b \lesssim 228[\text{GeV}] \text{ for } \tan \beta = 20$

due to small mass difference

✓ Negative Slope

With fixed $m_{{ ilde \chi}_1^0} \simeq 0.43 M_{1/2}$ increasing m_0 means increasing $m_{{ ilde au}_1}$

Need to increase $|A_0|$ to decrease $m_{\tilde{ au}_1}$ by raising off-diagonal element of stau mass matrix

☑ Upper & Lower edge

Large RGE effect for large $\tan \beta$ Req. 4 $339 [{\rm GeV}] \le m_{\tilde{\tau}} \le 450 [{\rm GeV}]$

Larger m_0 for lager $\tan \beta$

☑ Left-Right edges are determined by the higgs mass

Higgs mass : strong dependence on $|X_t|/\sqrt{6}m_{\tilde{t}}$, max at 1

$$\begin{split} m_h^2 &= m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{16\pi^2 v^2} \left[\log \left(\frac{m_{\tilde{t}}^2}{m_t^2} \right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right], \\ & (X_t = A_t - \mu \cot \beta, \quad m_{\tilde{t}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}), \end{split}$$

From right to left, $|A_0|$ becomes large more rapidly than m_0

Higgs mass first increases, then decreases, at maximum 126 GeV

4.2. m_0 - $M_{1/2}$ plane

Upper edge

$$\begin{cases} m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2} \\ \text{Req. 4 } 339 [\text{GeV}] \leq m_{\tilde{\tau}} \leq 450 [\text{GeV}] \end{cases}$$

Left-Right edges are determined by the higgs mass

With fixed $m_{{ ilde \chi}_1^0} \simeq 0.43 M_{1/2}$ increasing m_0 means increasing $m_{{ ilde au}_1}$

Need to increase $|A_0|$ to decrease $m_{\tilde{ au}_1}$ by raising off-diagonal element of stau mass matrix

From left to right , $|X_t|/\sqrt{6}m_{\tilde{t}}$ increases Higgs mass first increases , then decreases

 $4.2 m_0 - M_{1/2}$ plane

increasing $\,m_0^{\widetilde{ au}_1}$ means increasing $\,m_{\widetilde{ au}_1}$

Need to increase $|A_0|$ to decrease $m_{\tilde{\tau}_1}$ by raising off-diagonal element of stau mass matrix

From left to right , $|X_t|/\sqrt{6}m_{\tilde{t}}$ increases Higgs mass first increases , then decreases

Lower bound is deterbimed by DM aboundance

increasing aneta means increasing stau-tau-higgsino coupling

Increasing coanihhilation rate

Increasing DM mass

4.3. Mass spectrum

✓ Well know relations

Gauginos

$$M_3:M_2:M_1\simeq 6:2:1$$

$$M_1 \simeq m_{\tilde{\chi}_1^0} \simeq 0.43 M_{1/2}$$

 M_2 : secnd neutralino

 M_3 : gluino mass

■ 1st & 2nd generation scalars

$$m_{\tilde{q}_L}^2 \simeq m_0^2 + 4.7 M_{1/2}^2$$

 $m_{\tilde{q}_R}^2 \simeq m_0^2 + 4.3 M_{1/2}^2$
 $m_{\tilde{e}_L}^2 \simeq m_0^2 + 0.5 M_{1/2}^2$
 $m_{\tilde{e}_R}^2 \simeq m_0^2 + 0.1 M_{1/2}^2$

due to small yukawas

In our parameter region

$$m_{\tilde{q}_L} \simeq 2.2 M_{1/2}$$

 $m_{\tilde{q}_R} \simeq 2.1 M_{1/2}$

5 times larger than DM

4.3. Mass spectrum

- ✓ Well know relations
- lacksquare stau vs. 1st & 2nd generation sleptons small $\tan \beta$;

Small tau-yukawa and similar RG effect

Similar mass spectrum

large $\tan \beta$:

large tau-yukawa and different RG effect.
large A term contribution

Stau is lighter than other sleptons.

✓ Well know relations cont'd

Higgsinos, heavy higgses

Electroweak Sym Br.

$$|\mu|^2 = \frac{1}{2} \left[\tan 2\beta \left(M_{H_u}^2 \tan \beta - M_{H_d}^2 \cot \beta \right) - m_Z^2 \right]$$

For $\tan \beta \gg 1$ $|\mu|^2 \simeq -M_{H_u}^2$

Numerically,

$$m_{H_u}^2 \simeq -3.5 \times 10^3 \cot^2 \beta m_0^2 + 87 \cot \beta M_{1/2} m_0^\prime - 2.8 M_{1/2}^2$$

Well know relations cont'd

3rd generation squarks

stop

$$m_{\tilde{t}_1,\tilde{t}_2}^2 \simeq \frac{1}{2} \left(m_{Q_3}^2 + m_{U_3}^2 \right)$$

$$\mp \frac{1}{2} \sqrt{(m_{Q_3}^2 - m_{U_3}^2)^2 + 4(m_{\tilde{t}_{LR}}^2)^2}$$

$$m_{\tilde{t}_{LR}}^2 = m_t (A_t - \mu \cot \beta),$$

Large A term and Large RGE effect

Lighter stop is generally pretty light though still above LHC constraint sbottom

small $\tan \beta$;

Small bottom-yukawa and similar RG effect

Similar sbottom mass spectrum

large $\tan \beta$:

large bottom-yukawa and different RG effect. large A term contribution

Sbottom is lighter than other squarks

Features for spectrum summarized

- lacktriangleq All masses are strongly related with (predicted by) $m_{ ilde{ au}}(=m_{ ilde{\chi}_1^0})$
- ☑ Squarks, gluinos, 2nd neutralino, and sleptons are proportional to

$$m_{\tilde{\tau}}(=m_{\tilde{\chi}_1^0})$$

Our 4 requirements automatically, naturally predicted that LHC could not observe any signal for SUSY

DM Higgs mass, BBN (mass difference & massrange

4.4 other constraints

- ☑ g-2 becomes within 3 sigma
- ☐ Tiny effects on B physics

4.5 Direct ditection of DM

- Most important channel
- Cross section

$$\sigma_{\rm SI} = \frac{4}{\pi} \left(\frac{m_{\tilde{\chi}_1^0} m_T}{m_{\tilde{\chi}_1^0} + m_T} \right)^2 (n_p f_p + n_n f_n)^2$$

$$f_p = \sum_{q} f_q \langle p | \bar{q}q | p \rangle = \sum_{q=u,d,s} \frac{f_q}{m_q} m_p f_{T_q}^{(p)} + \frac{2}{27} f_{T_G} \sum_{q=c,b,t} \frac{f_q}{m_q} m_p$$

$$f_q = m_q \frac{g_2^2}{4m_W} \left(\frac{C_{h\tilde{\chi}_1^0 \tilde{\chi}_1^0} C_{hqq}}{m_h^2} + \frac{C_{H\tilde{\chi}_1^0 \tilde{\chi}_1^0} C_{Hqq}}{m_H^2} \right)$$

- Correlation between $\,m_H \simeq \mu\,$ and $\,\sigma_{
 m SI}$
 - Heavy higgs contribution is negligible

Smaller μ Larger coupling for $\tilde{\chi}_{\rm 1}^0 \tilde{\chi}_{\rm 1}^0 h$

Within the reach in the near future

$$\sum_{q=c,b,t} \frac{f_q}{m_q} m_{p_t}$$

4.6 LHC in near future

- ✓ Testable with 100fb^{-1} 20% efficiency?
- ✓ Signals
 - Stau track penetrating detector
 - Missing energy event as same as stau
 - Many light stop

Input	Point 1[GeV]	Point 2[GeV]	Point 3[GeV]
$M_{1/2}$	818.6	932.8	1038.0
m_0	452.0	657.7	639.7
A_0	-2264.7	-2918.4	-3397.0
Particle			
h	123.8	124.6	124.9
$ ilde{g}$	1822.4	2057.8	2272.6
${ ilde \chi}_1^0$	349.3	400.9	448.5
$ ilde{ au}_1$	350.3	401.0	449.1
$ ilde{u}_L$	1710.9	1942.2	2149.7
$ ilde{t}_1$	945.8	968.6	1016.3
Cross Section	Point1 [fb]	Point2 [fb]	Point3 [fb]
$\sigma(\tilde{u}_L, \tilde{u}_L)$	2.915	1.277	0.614
$\sigma(ilde{u}_L, ilde{u}_R)$	1.672	0.668	0.296
$\sigma(\tilde{u}_R, \tilde{u}_R)$	2.970	1.327	0.652
$\sigma(ilde{u}_L, ilde{d}_L)$	3.243	1.335	0.608
$\sigma(\tilde{u}_R, \tilde{d}_R)$	2.680	1.124	0.522
$\sigma(\tilde{g}, \tilde{u}_L)$	2.735	0.899	0.330
$\sigma(\tilde{g}, \tilde{u}_R)$	3.156	1.041	0.391
$\sigma(\tilde{t}_1, \tilde{t}_1^*)$	4.399	3.662	2.655
$\sigma(\tilde{\chi}_1^+, \tilde{\chi}_1^-)$	1.229	0.629	0.355
$\sigma(\tilde{\chi}_1^+, \tilde{\chi}_2^0)$	3.514	1.858	1.075
$\sigma(\tilde{\chi}_1^-,\tilde{\chi}_2^0)$	1.232	0.616	0.341
$\sigma(\text{All SUSY})$	37.730	17.277	8.456
Produced number			
$N_{ ilde{ au}_1}$	1595	774	303
$N_{ ilde{ au}_1^*}$	2270	989	409
$N_{ ilde{\chi}}$	3679	1692	978

5.Summary

- ☑ Constrained minimal SUSY standard model (CMSSM) with 4 requirement
- ☑ 4 requirement
 - Dark matter relic abundance
 - Higgs mass
 - Stau DM mass degeneracy
 - $339[\text{GeV}] \le m_{\tilde{\tau}} \le 450[\text{GeV}]$
- ✓ Very constrained PredictionsLower limit and lower limit for mass of SUSY particle
 - It is matter of cource that LHC has not observed yet Next LHC must observe SUSY signals
 - Very strong correlation among SUSY particles
 - DM direct detection in near future must observe DM signal