

β*-reach

R. Bruce, R. Assmann,

C. Alabau-Pons, F. Burkart, M. Cauchi, D. Deboy, M. Giovannozzi, W. Herr, L. Lari, G. Muller,

S. Redaelli, A. Rossi, B. Salvachua, G. Valentino, J. Wenninger, D. Wollmann

Acknowledgement

- Input and discussion from many people
 - B. Goddard
 - Impedance (E. Metral, N. Mounet, B. Salvant)
 - Optics (S. Fartoukh, M. Giovannozzi, R. de Maria)
 - Beta-beat (R. Tomas, G. Vanbavinckhove)
 - OP crew

Outline

- Overview of 2011 run
 - β* in 2011
 - Orbit stability
 - MDs: tight collimator settings and aperture measurements
- Outlook for 2012
 - Possible improvements in margins 2012
 - Aperture calculations
 - Scenarios for β* for 2012
 - Room for further gain

Conclusions

Importance of collimation for β*

- Collimation system defines minimum aperture that can be protected
- Possible values of β^* depend on the settings of all collimators and therefore on machine stability and frequency of collimation setups!
- To optimize β^* , we have to investigate
 - Machine stability and necessary margins in collimation hierarchy (gives minimum value of triplet aperture that can be protected)
 - Triplet aperture
- Today's talk concerns only the collimation limit on β*

2011 run, part 1

- 2010: safe margins in collimation hierarchy based on conservative assumptions
- Detailed analysis in Evian 2010 of the 2010 run
 - Calculation of margins based on data and operational experience
 - Detailed analysis allowed to decrease margins, in particular TCT/IR6
 - Scaling of triplet aperture from measurements at injection energy
 - \implies Allowed to decrease β^* from 3.5m to 1.5m
- Comfortable running at β*=1.5m in first half of 2011

2011 run, part 2

- So far: aperture based on measurements at injection, with tolerances added for orbit and beta-beat
- Measurements done only in crossing plane. In separation plane, aperture pessimistically determined from global aperture limit
- August 2011: Local aperture measurements in IR1/5 triplets at top energy and squeezed optics (see talk S. Redaelli and CERN-ATS-Note-2011-110 MD)
- Outcome: aperture close to ideal mechanical aperture in squeezed configuration
 - Extrapolating injection aperture in crossing plane as in Evian 2010 without tolerances gives similar result. Including tolerances resulted in pessimistic aperture
- With the same collimator settings, enough room for $\beta^*=1$ m without change in settings (see presentation S. Redaelli, J. Wenninger et al. in LMC)

2011 orbit stability triplets/TCTs

- Very good stability within fills
- In many cases better than 2010 in σ . Consistent with larger beam size from smaller β^*
- IR1 now stable within 0.6 σ for 99% coverage. For IR5, 1.1 σ still needed in spite of β *=1m
- Possibly part of margin due to temperature effects. Still room for improvement?

2011 orbit stability TCTs/IR6

• For orbit margin between TCTs and IR6, 1.1 σ needed and allocated (no reduction possible) for 99% coverage

MD on tight collimator settings

20600

- Collimators in IR7 and IR6 driven to tighter settings (TCP @ 4 nominal σ, TCS@6, TCLA@8)
- Qualified with loss maps

Reference: CERN-ATS-Note-2011-036 MD CERN-ATS-Note-2011-079 MD

20400

19800

betatron losses B1 3500GeV hor norm IR7 (2011.11.05, 00:57:51)

20000

s [m]

20200

1e-08

19400

19600

Conclusions from MD

LHC Collimation
Project
CERN

- Gain factor 3.3 in efficiency compared to 2010 Aperture (σ)
 average ⇒ Higher intensity reach
- Loss maps with tight settings in 3 MDs over the year: May, August, November
- Keeping old centers from setup in March
- All loss map OK ⇒
 - Demonstrates stability of collimation setup. Tight settings still valid 8 months after alignment
- Using tight settings gives more room to squeeze β*

Losses in ramp and squeeze

Beam Intensity [%]

TCP.C6L7.B1 [Gy/s]

- High losses in ramp and squeeze – orbit oscillations scrape beam at primary collimators
 - 1% loss in ramp, 5% loss in squeeze: not acceptable for highintensity operation
 - Improved orbit correction underway (S. Redaelli, J. Wenninger). No showstopper expected

Instability observations

- Impedance from tight settings under study see talk N. Mounet
 - Instability observed during intensity ramp-up (see talk E. Metral, LBOC 2011.08.30 and W. Herr, HiLumi workshop, 2011.11.17)
 - Probable cause: combination of impedance and beam-beam. Possibly mitigated by octupoles at 550A and chromaticity control. No show-stopper expected
 - Tight gap of TCP in mm similar to nominal gap at 7 TeV, while secondary collimators are further retracted
 - Sooner or later we have to use (at least) these settings in mm to reach nominal. Problematic for 7 TeV if tight settings can not be used now

Outline

- Overview of 2011 run
 - β* in 2011
 - Orbit stability
 - MDs: tight collimator settings and aperture measurements

- Outlook for 2012
 - Possible improvements in margins 2012
 - Aperture calculations
 - Scenarios for β* for 2012
 - Room for further gain

Conclusions

Possible improvements in margins 2012

- Based on 2011 operation, we conclude
 - 2011 assumptions kept for orbit, beta-beat: not likely that we can gain more.
 - Study of margins required for asynchronous dump protection consistent with present margins
 - Tight collimator settings \Rightarrow 2.5 σ gain in margin
- Beam size increasing at triplet and TCT \Rightarrow gain in σ when going to smaller β^* for margins constant in mm
- Gain in β-beat margin from tighter setting (total error depends on half-gap)
- Only small gain by going to 4 TeV
 - BPM systematic not expected to improve
 - Most of the errors stay constant in mm, but also the aperture \Rightarrow both aperture and errors increase in σ .

New method for adding margins

- Adding in square
 - Assuming errors are statistically independent random variables
 - Selecting a margin corresponding to ~99% confidence level for each error source
 - To arrive at a total 99% confidence level, margins should be added in square

Old:
$$\Delta_{total} = \sum_{i} |\Delta_{total}|$$

New:

$$\Delta_{tot} = \sqrt{\sum_{i} \Delta_{i}^{2}}$$

- Logical extension of the already deployed strategy for orbit and already accepted risk levels, but should be discussed in MPP
- Risk level:
 - Assuming one asynchronous dump per year, spending 1/3 of time in stable beams
 - 2011: zero asynchronous dumps, 2010: 1 asynchronous dumps
 - With violation of margin 1% of time, expect 1 dump dangerous for TCT in 300 years and for triplet in 30000 years if independent
 - Same risk level as presently assumed in orbit analysis

Aperture calculations

- 3.5 TeV or 4 TeV. Showing some 7 TeV results but not main focus
- Keeping beam-beam separation constant at 9.3 σ for ε =2.5 μ m. Possible with 25ns?

(see talk G. Papotti

- Scaling 14 σ aperture at β *=1m, 120 μ rad.
 - No additional margins added, similar to the switch to β*=1m
 - Spurious dispersion not included – assuming main beam stays on-momentum.
 Momentum cut of tails still in IR3
 - Aperture has to be remeasured and cleaning qualified at new β*.
 - In case of unexpected problems, step back

Aperture scaled from 14 σ at β *=1m, 120 µrad half angle, keeping BB separation constant, using ATS optics from S. Fartoukh

Reach in β* with tight settings

old	3.5 TeV 4	1 TeV 7	TeV
gamma	3730	4263	7461
TCP 7	4	4.3	5.7
TCSG 7	6.0	6.4	8.5
TCLA 7	8.0	8.6	11.3
TCSG 6	6.8	7.3	9.6
TCDQ 6	7.3	7.8	10.3
тст	9.1	9.6	12.6
aperture	10.9	11.6	15.0
Φ (µrad)	143	134	110
β* (m)	0.7	0.7	0.6

- Tight settings, old method:
 - IR6 and IR7 fixed in mm at the 3.5 TeV tight settings
 - Adjusting other margins IR6-TCT-aperture with expected beam size

new	3.5 TeV 4	TeV 7	7 TeV
gamma	3730	4263	7461
TCP 7	4	4.3	5.7
TCSG 7	6.0	6.3	7.7
TCLA 7	8.0	8.3	9.7
TCSG 6	6.8	7.1	8.5
TCDQ 6	7.3	7.6	9.0
TCT	8.2	8.6	10.4
aperture	9.4	9.9	12.1
Φ (µrad)	155	145	126
β* (m)	0.6	0.6	0.45

- Tight settings, new method:
 - primary collimator stays at 4σ 3.5 TeV position in mm, but using σ at 4 TeV for margins in IR7 and IR6-IR7

Fall-back solution in case of unexpected problems: intermediate settings, linear margins, beta*=0.9 m

Operational challenges

- Orbit correction in squeeze
- Non-linear triplet correctors
 - Possibly needed for smaller β*
 - Study needed See MD request R. Tomas et al.
- IR6 orbit interlock at 1.5σ same as margin with new method (comment J. Wenninger)
- Operational strategy to check that limits are not violated
- Mitigate beam-beam induced instabilities with tight settings
 - Larger beam-beam separations needed?

β* vs beam-beam separation

4 TeV, aperture scaled from 14 σ @ β^* =1m, ϵ_{xn} =2.5 μ m for BB

- Larger BB separation could be needed at 25 ns
- Increasing to 12σ BB separation: we lose about 10cm in β *

Future improvements in β* present machine

- Ways to reach smaller β* with the present machine
 - Reduce margin TCP-TCS7-TCS6 no catastrophic damage if hierarchy breaks, but risk for dumps and/or high radiation to DS magnets
 - Move in primary collimator closer to beam challenge for impedance and orbit correction. 4σ TCP at 4 TeV gives small gain
 - Investigate BPMs in experimental IRs. Which drifts are real? Can the orbit margin be reduced? (comment S. Fartoukh)
 - Decrease beam-beam separation (gains aperture)
 - Updated IR6 optics with 90 deg phase advance MKD-TCDQ (S. Fartoukh).
 Reduces dangerous time window during asynchronous dump (or increases the acceptable TCDQ error). Can allow for reduced margin IR6-TCTs.
- We are probably not at the limit yet more studies required

Future improvements in β* upgraded machine

- Upgraded collimators with built-in BPM buttons allow collimators to be quickly re-centered without touching beam ⇒ decreased orbit margins
 - Prototype installed in the SPS. Promising MD results
 (D. Wollmann et al in IPAC11)
- Dream scenario opens for very small β*
 - TCP 4σ at 7 TeV (significant challenge for orbit correction and impedance)
 - BPM button collimators orbit margin drastically reduced
 - Significant reduction below nominal
- Upgraded magnets and new ATS optics (flat beams?) allow much smaller β^* (L. Rossi, S. Fartoukh et al)

Outline

- Overview of 2011 run
 - β* in 2011
 - Orbit stability
 - MDs: tight collimator settings and aperture measurements
- Outlook for 2012
 - Possible improvements in margins 2012
 - Aperture calculations
 - Scenarios for β* for 2012
 - Room for further gain

Conclusions

Conclusions

- β^* is dependent on settings and margins in collimation and protection system. Present limitation on β^* in the LHC.
- Important 2011 operational results
 - Measured aperture close to mechanical at top energy, squeeze
 - Tight collimator settings show excellent long-term stability. Instabilities and orbit oscillations in squeeze must be controlled.
 - No reduction of margin for orbit and β-beat
- Gain in β^* from new statistical method for calculating margins, summing squares
- With tight settings, we can now go to $\beta^*=70$ cm with old method, $\beta^*=60$ cm with new method if we assume
 - BB separation can be kept constant and instabilities mitigated
 - We have the same excellent aperture
 - Orbit correction in ramp and squeeze improves

Experience during startup will tell!

There is still some room improvement – studies to be done

Backup slides

IR5 B1: BPM problems

- BPMS.2L5.B1 jumps by >10mm between fills.
 - Both planes affected
- Excluding this BPM from analysis
- BPMS.2L5.B1 and BPMS.2R5.B1 both flagged with error during TCT setup
- Less complete analysis in IR5 than in IR1 due to lack of reliable data