

What to expect from TMVA The Toolkit for Multivariate Analysis in ROOT

Helge Voss (MPIK, Heidelberg)

(for TMVA A.Hoecker, E.v.Toerne, H.Voss, J.Teerhag, J.Stelzer, P.Speckmayer)

ROOT Users Workshop, Saas Fee, 11-14 March 2013

Outline

Introduction to TMVA

- Classification and Regression
- Highlight of what is "new"-ish

Using TMVA

- example walk through
- general remarks on MVA's
 - do's and don'ts
 - what about systematic errors.
- real application examples
- Plans
- Summary

Event Classification

- Discriminate Signal from Background
 - select events of type S?
 - we have discriminating variables x_1, x_2, \dots

A nonlinear one?

Which model/slass (Stabler, Ohigandas Appleads

High variance, small bias methods

TMVA helps to decide on the model and finds the "optimal" boundary!

Regression

- estimate "functional behaviour" from a set of 'known measurements"?
- e.g. : photon energy as function "D"-variables ECAL shower parameters + ...

- known analytic model (i.e. nth -order polynomial) → Maximum Likelihood Fit)
- no model ?
 - "draw any kind of curve" and parameterize it?
- seems trivial ? → human brain has very good pattern recognition capabilities!

■ what if you have many input variables? → Use TMVA

IMV

CMS Higgs Discovery

TMVA

(egeeu AVIII rot elamexe esin e doue)

MVA regression for energy calibration

Photon Energy Corrections, Scale and Resolution

- ECAL cluster energies corrected using a MC trained multivariate regression
 - Improves resolution and restores flat response of energy scale versus pileup
 - Inputs: Raw cluster energies and positions, lateral and longitudinal shower shape variables, local shower positions w.r.t. crystal geometry, pileup estimators
- Regression also used to provide a per photon energy resolution estimate
- Energy Scale and resolution: use Z→e⁺e⁻

Effect of the regression on the Z->e+epeak

PPC 2012 - KIAS - Nov 5th

Javier Cuevas, University of Oviedo

Helge Voss

space

(feature)

variable

"D" variables (sensitivity to Signal and Background)

■ D-dim. variable space → one combined variable

 $y(x): R^{D} \rightarrow R:$

- ■simple cut on y → complex decision boundary in feature space
- how to find such magical y(x)?

MVA Classification

space

(feature)

variable

■simple cut on y → complex decision boundary in feature space

how to find such magical y(x)?

 $y(x): R^{D} \rightarrow R:$

- linear, nonlinear, piecewiese, flexible, less flexible ...
- fit free parameters to do best (minimize a loss function i.e. how many misclassified events)

MVA Claression Forget about all "blue" and only look at "red" histograms

log(sIPS_pi)

(feature) variable log(FS_Bd)

space

 $y(x): R^{D} \rightarrow R:$

- linear, nonlinear, piecewiese, flexible, less flexible ...
- fit free parameters to do best (minimize a loss nts) function – i.e. howers residual (f(x))

Helge Voss

TMVA Input Variableslog(sIPS_pi)

log(FS_Bd)

(feature) variable

log(sIPS_pi)

space

Helge Voss

MVA Claression Forget about all "blue" and only look at

"red" histograms

 $y(x): R^{D} \rightarrow R:$

Regression: y=const → contour line

Classification: → decision Boundary

- take model for y(x)
 - linear, nonlinear, piecewiese, flexible, less flexible ...
 - fit free parameters to do best (minimize a loss nts) function – i.e. how residual (f(x))

Receiver Operation

Charactersic (ROC) curve

Signal(H₁) /Background(H₀) discrimination:

Signal(H_1) /Background(H_0):

- Type 1 error: reject H₀ although true → background contamination
 - Significance α: background sel. efficiency 1- α: background rejection
- Type 2 error: accept H₀ although false → loss of efficiency
 - Power: 1- β signal selection efficiency

What is **TMVA** doing for you?

- Finds $y(x) : R^n \rightarrow R$
 - given a certain type of model class y(x)
 - "fits" (learns) from events with known type parameters in y(x) such that y:
 - CLASSIFICATION: separates well Signal from Background in training data
 - REGRESSION: fits well the target function for training events
 - use for yet unknown events → predictions
 - → supervised machine learning

7MVA Content

implemented classifiers and regression methods

- Rectangular cut optimisation (classification only)
- Projective and multidimensional likelihood estimator
- k-Nearest Neighbour algorithm (kNN)
- LD, Fisher and H-Matrix discriminants (classification only)
- Function discriminant (classification only)
- Artificial neural network (MLP) → Bayesian Network features, BFGS
- Boosted/bagged decision trees (BDT) → RealAdaBoost, Gradient-Boost
- Rule Fitting (classification only)
- Support Vector Machine (SVM)

implemented data preprocessing stages:

- De-correlation, Principal Value Decomposition, Normalisation, "Gaussianisation", Flattening (uniform)
- combination methods:
 - Boosting, Categorisation, MVA Committees

Using TMVA

2 main steps:

1. Training phase:

train(build), test and evaluate classifiers using data samples with known signal and background events

2. Application phase:

use to classify unknown data samples

ROOT script for Training


```
void TMVClassification()
 TFile* outputFile = TFile::Open( "TMVAoutput.root", "RECREATE" );
 TMVA::Factory *factory = new TMVA::Factory( "MyMVAnalysis", outputFile,"!V");
                                                                                            create Factory
 TFile *input = TFile::Open("tmva example.root");
 factory->AddSignalTree
                              ((TTree*)input->Get("TreeS"));
                                                                                  give training/test trees
 factory->AddBackgroundTree ( (TTree*)input->Get("TreeB") );
 factory->AddVariable("var1+var2", 'F');
 factory->AddVariable("var1-var2", 'F');
                                                                                  register input variables
 factory->AddVariable("var3", 'F');
 factory->AddVariable("var4", 'F');
 factory->PrepareTrainingAndTestTree("", "nTrain Signal=3000:nTrain Background=3000:SplitMode=Random:!V");
                                                                                              select MVA
 factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood",
                       "!V:!TransformOutput:Spline=2:NSmooth=5:NAvEvtPerBin=50");
                                                                                                    methods
 factory->BookMethod( TMVA::Types::kMLP, "MLP", "!V:NCycles=200:HiddenLayers=N+1,N:TestRate=5" ):
                                                                                                     options
 factory->TrainAllMethods();
 factory->TestAllMethods();
 factory->EvaluateAllMethods();
                                                                                 train, test and evaluate
 outputFile->Close();
 delete factory;
```

Helge Voss

ROOT script for Application


```
void TMVClassificationApplication()
                                                                                     create Reader
 TMVA::Reader *reader = new TMVA::Reader();
 Float_t var1, var2, var3, var4;
 reader->AddVariable( "var1+var2", &var1 );
 reader->AddVariable( "var1-var2", &var2 );
                                                                                     register the variables
 reader->AddVariable( "var3", &var3 );
 reader->AddVariable( "var4", &var4);
 reader->BookMVA( "MLP classifier", "weights/MyMVAnalysis MLP.weights.txt");
                                                                                     read trained classifier(s)
 TFile *input = TFile::Open("yourDataFile.root");
 TTree* theTree = (TTree*)input->Get("TreeS");
                                                                                     event loop
 // ... set branch addresses for user TTree
 for (Long64 t iev=3000; iev<theTree->GetEntries(); iev++) {
   theTree->GetEntry(iev);
   var1 = userVar1 + userVar2;
   var2 = userVar1 - userVar2;
                                                                                     compute input variables
   var3 = userVar3:
   var4 = userVar4;
   Double_t mvaValue = reader->EvaluateMVA( "MLP classifier" );
                                                                                     classifier output
   // do something with it ...
```


Running **TMVA**

- provide data: ROOT TTree, ASCII-file or event-by-event
- choose variables (or functions ROOT Expressions thereof)
- pre-selection cuts (independent for signal and bkg)
- define global event weights for signal or background input files
- define individual event weight (any variable present in training data)
- choose splitting into training and test samples:
 - Block wise, Randomly, Periodically (i.e. periodically 3 test ev., 2 train ev., etc..)
 - User defined training and test trees
- choose pre-processing of input variables (e.g., de-correlation)
- choose classifiers(s) and it's configuration options
- train/test/evealuate
 - → look at the results and diagnostics
- if happy, use trained classifier in the analysis

Toy Example Training:

Data set with 4 linearly correlated Gaussian distributed variables:

Helge Voss

Receiver Operation Characteristics (ROC) Curve

Smooth background rejection versus signal efficiency curve:

0.1

0.2

0.3

(from cut on classifier output)

0.4

0.5

0.6

8.0

0.7

0.9

Signal efficiency

Evaluating the Classifier Training

- inspect classifier output distribution
- compare for test and training samples ...

Remark on overtraining

- classifier has too many degrees of freedom for limited number of training events
 - degrades performance by fitting statistical fluctuations in training sample
 - NOT a systematic error in itself!
- Compare performance between training and test sample to detect overtraining
- Avoid overtraining: *e.g.*, smooth likelihood PDFs, restrict decision tree depth, increase kernel parameter size, ...

Evaluating the Classifier Training

Signal purity

Signal efficiency*purity

Optimal cut for each classifiers ...

Determine the optimal cut (working point) on a classifier output

Cut efficiencies and optimal cut value

Signal efficiency

Background efficiency

Evaluating the Classifier Training

Projective likelihood PDFs, MLP training, BDTs, ...

7MVA Evaluation "Framework"

- TMVA helps to understand/optimise your training results!
- ROOT evaluation/diagnostic scripts (through GUI)

Plot all signal (S) and background (B) input variables with and without pre-processing

Correlation scatters and linear coefficients for S & B

Classifier outputs (S & B) for test and training samples (spot overtraining)

Classifier Rarity distribution

Classifier significance with optimal cuts

B rejection versus S efficiency – ROC curve

Classifier-specific plots:

- Likelihood reference distributions
- Classifier PDFs (for probability output and Rarity)
- Network architecture, weights and convergence
- Rule Fitting analysis plots
- Visualise decision trees+ control plots

Helge Voss

Evaluating the Classifiers Training (taken from TMVA output...)


```
--- Fisher
               : Ranking result (top variable is best ranked)
--- Fisher
               : Rank : Variable : Discr. power
--- Fisher
--- Fisher
                1 : var4 : 2.175e-01
--- Fisher
               : 2 : var3 : 1.718e-01
--- Fisher
               : 3 : var1
--- Fisher
                                : 9.549e-02
--- Fisher
                4 : var2
                                : 2.841e-02
--- Fisher
```

How discriminating is a variable ? (treat with care, check also the variable separations themselves)

Correlation and Overlap Between Different Classifiers

→ Do classifiers select the same events as signal and background ? If not, there is something to gain!

Decision Boundaries

BDT

kNN

MLP

LD

Likelihood

7 MVA Categories

- TMVA Categories: one classifier per 'region'
- 'regions' in the detector (data) with different features treated independent
 - improves performance
 - avoids additional correlations where otherwise the variables would be uncorrelated!

Recover optimal performance after splitting into categories

Example: var4 depends on

some variable

Helge Voss

(T) MVA and Systematic Uncertainties

- minimize "systematic" uncertainties (robustness)
- "classical cuts": do not cut near steep edges, or in regions of large sys. uncertainty
- → hard to translate to MVAs:
 - artificially degrade discriminative power (shifting/smearing) of systematically "uncertain" observables IN THE TRAINING
 - → remove/smooth the 'edges' → MVA does not try to exploit them
 - → First attempts to automatize this are on the way

CMS Higgs Discovery

(such a nice example for MVA usage)

- Multivariate electron identification in 2012
 - ECAL, tracker, ECAL-tracker-HCAL matching and impact parameter (IP) observables

 $H \rightarrow \gamma \gamma$

- Analysis selection (MultiVariate Analysis MVA)
 - Vertex ID
 - Input variables: Σp_T^{2 (tracks)}, p_T balance wrt γγ, conversions information
 - ID photons $p_{T_1} > m_{\gamma\gamma} / 3$ $p_{T_2} > m_{\gamma\gamma} / 4$
- MVA Diphoton discriminant categories
 - High score
 - · signal-like events
 - good m_{vv} resolution
 - Designed to be m_{yy} independent
 - Trained on signal and background MC
 - Input variables:
 - Kinematic variables: p $_{T\gamma}$ / m $_{\gamma\gamma}$, η_{γ} , cos($\phi_{\mbox{\tiny 1}}$ $\phi_{\mbox{\tiny 2}}$
 - Photon ID MVA output for each photon
 - Per-event mass resolutions for the correct and incorrect choice of vertex

Helge voss

LHCb B_s→µµ "evidence"

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

LHCb-PAPER-2012-043 CERN-PH-EP-2012-zzz October 31, 2012

First evidence of the $B^0_s \to \mu^+\mu^-$ decay LHCb collaboration

A two-stage multivariate selection, based on boosted decision trees [13], is applied. The first multivariate discriminant, the MVS, removes 80% of the background while retaining 92% of signal. The output of the second multivariate discriminant, called BDT in the following, and the dimuon invariant mass are used to classify the selected candidates in a binned two-dimensional space.

You don't even need Monte Carlo to train!

"sWeights" allow to generate signal and data distributions of any variable that is uncorrelated to one variable where one can fit already a signal +background PDF to.

First observation of the $B_{s2}^*(5840)^0 \to B^{*+}K^-$ decay and properties of the orbitally excited B_s^0 mesons

The LHCb collaboration[†]

mass distribution

- fit sig/bkg pdfs
- → sWeights
- → BDT training variables from data mass distribution

after BDT selection

- Negative event weights work FINE in TMVA
 - also BDTs (as proven above) where boosting negative weights is tricky! → we also experiment with alternative "global event pairing"

Helge Voss

7MVA Outlook

- alternative negative event weight treatment for BDT (and general)
- user help to increase robustness w.r.t. systematic uncertainties
- (automatic option parameter tuning)
- update of Users Guide (ready but valied for 'next release' only)

Thoughts for the future

- constant improvement of the classifiers
 - improve SVM implementation (automatic setting of tuning parameters, training time estimate, ...) and promote its usage
 - speed up ?
- start thinking about "parallelisation": starting points
 - serialize processing of different methods → should be easy to parallelise for different CPU cores
 - BDT training (each node split →loops serially over each variable)
 - Genetic fitting algorithm
 - GPU usage ? → one user already tried, need to follow up
 - PROOF-lite ? (well, I'm one of those that ...)

TMVA

Summary

- Multivariate Classifiers (Regressors)
 - → (fit) decision boundary (target function)
- TMVA provides:
 - May different machine learing algorithms, all easily accessible with the same e.g.
 - PDF based: multi-dimensional (and projective) Likelihood
 - Linear: Linear Classifier (e.g. Fisher Discriminant)
 - Non-Linear: ANN, BDT, SVM
- TMVA helps to understand/judge/improve your training
 - carefully study the control plots
 - compare different MVAs!
 - find working point on ROC curve
- MVAs are not magic:
 - systematic uncertainties don't lie in the training !!
 - estimate them similar as you'd do in classical cuts

Generalities for (T)MVA Analyses

- There is no magic in MVA-Methods:
 - "black boxes" ? → they are not sooo hard to understand
 - you typically still need to make careful tuning and do some "hard work"
 - no "artificial intelligence" ... just "fitting decision boundaries" in a given model
- The most important thing at the start is finding good observables
 - good separation power between S and B
 - little correlations amongst each other
 - watch correlation between selection variables and the parameters you try to measure!
- Think also about possible combination of variables
 - this may allow you to eliminate correlations
 - rem.: you are MUCH more intelligent than what the algorithm will do

Generalities for (T)MVA Analyses

- Apply pure preselection cuts and let the MVA only do the difficult part.
- "Sharp features should be avoided" → numerical problems, loss of information when binning is applied
 - simple variable transformations (i.e. log(variable)) can often smooth out these areas and allow signal and background differences to appear in a clearer way

Systematic Uncertainties

- Multivariate Classifiers THEMSELVES don't have systematic uncertainties
 - → even if trained on a "phantasy Monte Carlo sample"
 - there are only "bad" and "good" performing classifiers!
 - OVERTRAINING is NOT a systematic uncertainty !!
 - difference between two classifiers resulting from two different training runs DO NOT CAUSE SYSTEMATIC ERRORS
 - same as with "well" and "badly" tuned classical cuts
 - MVA classifiers: → only select a region(s) in observable space
- Efficiency estimate (Monte Carlo) → statistical/systematic uncertainty
 - involves "estimating" (uncertainties in) distribution of PDFJyJS(B)
 - → estimate systematic error/uncertainty on efficiencies
 - statistical "fluctuations" → re-sampling (Bootstrap)
 - "smear/shift/change" input distributions and determine $PDF \downarrow y \downarrow S(B)$
 - simple "cut variation" has never been the best test ©
- Only involves "test" samples...
 - systematic uncertainties have nothing to do with the training !!

(T) MVA and Systematic Uncertainties

- → Don't be afraid of correlations!
 - → typically "kinematically generated" → easily modeled correctly
 - "classical cuts" are also affected by "wrongly modeled correlations"
 - → MVA method let's you spot mis-modeled correlations!
 - → "projections" of input variables
 - \rightarrow + the combined MVA test statistic "y(x)"!

Systematic "Error" in Correlations

Correlation Matrix (signal)

Use as training sample events that have correlatetions

- optimize CUTs
- train an propper MVA (e.g. Likelihood, BDT)

Assume in "real data" there are NO correlations → SEE what happens!!

- Compare "Data" (TestSample) and Monte-Carlo
- both taken from the same underlying distributions

Systematic "Error" in Correlations

- Compare "Data" (TestSample) and Monte-Carlo
- both taken from the same underlying distributions that differ by the correlation!!!

Differences are ONLY visible in the MVA-output plots (well...and if you

were to study the 'cut sequences')
Helge Voss
What to expect from TMVA - March 14 2013

Robustness Against Systematics

- Is there a strategy however to become 'less sensitive' to possible systematic uncertainties
 - i.e. classically: variable that is prone to uncertainties → do not cut in the region of steepest gradient
 - classically one would not choose the most important cut on an uncertain variable
- Try to make classifier less sensitive to "uncertain variables"
 - i.e. re-weight events in training to decrease separation
 - in variables with large systematic uncertainty (certainly not yet a recipe that can strictly be followed, more an idea of what could perhaps be done)

"Calibration uncertainty"

- → possible shift
- → worsen (or increase) the discrimination power of "var4"

Robustness Against Systematics

Robustness Against Systematics

