

CP violation in $B_s \rightarrow J/\psi \phi$

Yuehong Xie (on behalf of the LHCb collaboration) University of Edinburgh

Flavour Physics and CP Violation Hefei, China, May 2012

Outline

- $B_s \rightarrow J/\psi \phi$ as a probe for new physics
- History, progress and new results
- Implications
- Conclusions and outlook

This presentation will concern

LHCb: forward spectrometer at LHC designed for flavour physics CDF and D0: general purpose detectors at Tevatron

Look for \mathcal{OP} in B_s system

• Flavour violation and CP violation (CPV) in K and B_d systems well described by CKM mechanism

- CPV arising from a single phase in CKM matrix is too small to explain baryon asymmetry in the Universe
- B_s decays provide an excellent lab to look for new sources of CP violation

Neutral $B_s - \overline{B}_s$ system

• Schrödinger's equation describes time evolution

$$i\frac{d}{dt}\binom{|B_{s}(t)\rangle}{|\overline{B}_{s}(t)\rangle} = \left(\begin{bmatrix} M_{11} & M_{12} \\ M_{12}^{*} & M_{11} \end{bmatrix} - \frac{i}{2}\begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^{*} & \Gamma_{11} \end{bmatrix}\right)\binom{|B_{s}(t)\rangle}{|\overline{B}_{s}(t)\rangle}$$
$$M_{12} = \begin{bmatrix} \bigcup_{s \ v \ w \ v \ w \ b} \end{bmatrix} + NP \qquad \Gamma_{12} = Im\left[\bigcup_{s \ w \ w \ w \ b} \end{bmatrix}$$

New physics (NP) naturally affects M_{12} . Possibility of new physics in Γ_{12} not excluded.

- Diagonalizing Hamiltonian leads to two mass eigenstates with masses $M_{H(L)}$ and decay width $\Gamma_{H(L)}$

$$B_{s,H} = pB_s + q\overline{B}_s, \qquad B_{s,L} = pB_s - q\overline{B}_s$$

B_s mesons change flavour during their lifetime

Probes for NP in B_s mixing

Comparing these direct measurements with their indirect determinations in the Standard Model (SM)

- 1) CPV in B_s mixing: $a_{fs}^s = 1 |q/p|^2 \approx |\Gamma_{12}/M_{12}|\sin\phi, \phi = \arg(-M_{12}/\Gamma_{12})$
 - SM: $a_{fs}^s = (0.29 \pm 0.09) \times 10^{-4}$ [Lenz, Nierste, arXiv1102.4274]
 - D0: $a_{fs}^{s} = \left(-17 \pm 91^{+14}_{15}\right) \times 10^{-4} \left[\text{PRD82} (2010) 012003\right]$
- 2) mass difference $\Delta M_s = M_H M_L \approx 2M_{12}$
 - SM: $\Delta M_s = 17.3 \pm 2.6 \text{ ps}^{-1}$ [Lenz, Nierste, arXiv1102.4274]
 - LHCb preliminary: $\Delta M_s = 17.725 \pm 0.041 \pm 0.026 \text{ ps}^{-1}$ [LHCb-CONF-2011-050]
- 3) decay width difference: $\Delta \Gamma_{\rm s} = \Gamma_{\rm L} \Gamma_{\rm H} \approx 2\Gamma_{12} \cos \varphi$
 - SM: $\Delta \Gamma_s = 0.087 \pm 0.021 \text{ ps}^{-1}$ [Lenz, Nierste, arXiv1102.4274]
 - Measured in $B_s \rightarrow J/\psi \phi$
- 4) mixing induced CPV in B_s decay to CP eigenstates (e.g. $B_s \rightarrow J/\psi\phi$)

Mixing-induced CPV in $b \rightarrow c\bar{c}s$

•
$$B_{s} \rightarrow f_{CP}$$
 (eigenvalue η_{CP})
 $\lambda = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} \qquad S = \frac{2 \operatorname{Im} \lambda}{1 + |\lambda|^{2}} \qquad C = \frac{1 - |\lambda|^{2}}{1 + |\lambda|^{2}}$

 $Im\lambda \neq 0 \rightarrow mixing-induced CPV$

$$A(t) = \frac{\Gamma(B(t) \to f) - \Gamma(\overline{B}(t) \to f)}{\Gamma(B(t) \to f) + \Gamma(\overline{B}(t) \to f)} \propto S \cdot \sin(\Delta M_s t) + C \cdot \cos(\Delta M_s t)$$

• $b \rightarrow c\bar{c}s \text{ decays of } B_s$ (ignore tiny CPV in mixing and penguin pollution) $S = -\eta_{CP} \sin \phi_s$ C = 0 $\phi_s^{SM} = -2\beta_s = -0.036 \pm 0.003$ [Lenz, Nierste, arXiv1102.4274] phase ϕ_s probes NP in M₁₂ $\phi_s = \phi_s^{SM} + \Delta \phi^{NP}$, $\Delta \phi^{NP} = \arg\left(\frac{M_{12}}{M_{12}^{SM}}\right)$

Golden channel $B_s \rightarrow J/\psi \phi$

- Theoretically and experimentally clean
 - b \rightarrow ccs tree dominance leads to precise prediction of ϕ_s in SM
 - Relatively large branching ratio
 - Easy to trigger on muons from $J/\psi \to \mu^+\mu^-$
- Multivariate analysis
 - 10 physics parameters: ϕ_s , $\Delta\Gamma_s$, Γ_s , ΔM_s ,
 - 3 amplitudes and 3 strong phases
 - 2 initial B_s flavours
 - 4 CP eigenstates: 3 K⁺K⁻ P-waves and 1 S-wave
 - 4D space: 3 angles (θ , ϕ , ψ) and decay time t

Need flavour-tagged, time-dependent angular analysis.⁸

A bit of history

- 2007: first tagged analysis by CDF, followed by D0
- 2009: 2.1σ deviation from SM in CDF+D0 combination [DØ Note 5928-CONF]
- 2010: D0 same-sign dimuon asymmetry A_{sl}^{b} in 6.1 fb⁻¹ showed 3.2 σ from SM, implying large ϕ_{s} (assuming NP in $B_{s} M_{12}$ only) [PRD82 (2010) 032001]
- 2011: D0 update of A^b_{sl} with 9 fb⁻¹ showed 3.9σ deviation from SM [PRD84 (2011) 052007]
- 2011: first LHCb tagged analysis result

9

Latest publications

LHCb: PRL108 (2012) 101803

CDF: PRD85 (2012) 072002 D0: PRD85 (2012) 032006

SM: Lenz, Nierste, arXiv1102.4274

Method to resolve the ambiguity [Y. Xie et al., JHEP 09 (2009) 074]

Two-fold ambiguity

$$(\phi_s, \Delta\Gamma_s, \delta_{\parallel} - \delta_0, \delta_{\perp} - \delta_0, \delta_s - \delta_0) \iff (\pi - \phi_s, -\Delta\Gamma_s, \delta_0 - \delta_{\parallel}, \pi + \delta_0 - \delta_{\perp}, \delta_0 - \delta_s)$$

K⁺K⁻ P-wave:

Phase of Breit-Wigner amplitude increases rapidly across $\phi(1020)$ mass region

$$BW(m_{KK}) = \frac{F_r F_D}{m_\phi^2 - m_{KK}^2 - im_\phi \Gamma(m_{KK})}$$

K⁺K⁻S-wave:

Phase of Flatté amplitude for f₀(980) relatively flat (similar for non-resonance)

Phase difference between S- and P-wave amplitudes

Decreases rapidly across $\phi(1020)$ mass region

Resolution method: choose the solution with decreasing trend of $\delta_s - \delta_P$ vs m_{KK} in the $\phi(1020)$ mass region 11

Ambiguity resolved, $\Delta \Gamma_s > 0$

LHCb-PAPER-2011-028, arXiv:1202.4717, accepted by PRL

CERN COURIER

Mar 27, 2012

The heavier B_s meson state lives longer

The LHCb collaboration has determined the sign of the width difference in the B_s system, $\Delta\Gamma_s$,

through the influence of quantummechanical interference. This shows for the first time that the heavier of the

two B_s meson states has the longer lifetime, a result that is in agreement with the Standard Model expectation and similar to the situation in the kaon system.

Also top news at LHCb public page http://lhcb-public.web.cern.ch/lhcb-public/Welcome.html#phis-2

 $\Delta\Gamma_{s} < 0$ and $\phi_{s} \sim \pi$ excluded at 4.7 σ CL True solution: $\Delta\Gamma_{s} > 0$ and $\phi_{s} \sim 0$. SM wins so far.

One solution left

LHCb has the best precision

Consistent with SM, but still sizeable room for new physics in B_s mixing. Higher precision (particularly for ϕ_s) required.

CDF update with 9.6 fb⁻¹ and LHCb new result with 1 fb⁻¹ not included.

CDF preliminary update

CDF Note 10778 9.6 fb⁻¹, 1.96 TeV pp collision 11000 signals

Opposite side tagging and same side tagging (first half of Run II data)

$$\begin{aligned} \tau(B_s^0) &= 1.528 \pm 0.019 \text{ (stat)} \pm 0.009 \text{ (syst) ps}, \\ \Delta \Gamma_s &= 0.068 \pm 0.026 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}, \\ A_0(0)|^2 &= 0.512 \pm 0.012 \text{ (stat)} \pm 0.014 \text{ (syst)}, \\ A_{\parallel}(0)|^2 &= 0.229 \pm 0.010 \text{ (stat)} \pm 0.017 \text{ (syst)}, \\ \delta_{\perp} &= 2.79 \pm 0.53 \text{ (stat)} \pm 0.15 \text{ (syst) rad.} \end{aligned}$$

 $\beta_s^{J/\psi\phi} \in [-\pi/2, -1.51] \bigcup [-0.06, 0.30] \bigcup [1.26, \pi/2]$ 14

LHCb new analysis

1 fb⁻¹ @ 7 TeV in 2011

$\mathbf{A}_{\mathbf{A}}^{\mathbf{C}}$ \mathbf{A}_{\mathbf

very clean with 21200 signals (t>0.3 ps required)

LHCb-CONF-2012-002

Effective time resolution 45 fs from prompt events c.f. oscillation period ~350 fs

Flavour tagging

 ϕ_{s} is obtained from time distributions of $B_{s}(\overline{B}_{s})$ to CP eigenstates $|A_{0}|^{2}(t) = |A_{0}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \pm \sin\phi_{s}\sin(\Delta mt)\right]$ $+ \text{ for } \mathbf{B}_{s} - \text{ for } \overline{\mathbf{B}}_{s}$

• Currently use OS, fully optimized and calibrated on data

Effective tagging efficiency (2.29 ±0.07 ±0.26)%

mistag probability calibration with $B^+ \to J/\psi K^+$ 16

Fit projection

Different CP eigenstates are statistically separated in maximum likelihood fit using angular information

LHCb-CONF-2012-002

LHCb preliminary result

Parameter	Value	Stat.	Syst.
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6580	0.0054	0.0066
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.116	0.018	0.006
$ A_{\perp}(0) ^2$	0.246	0.010	0.013
$ A_0(0) ^2$	0.523	0.007	0.024
$F_{\rm S}$	0.022	0.012	0.007
$\delta_{\perp} \text{ [rad]}$	2.90	0.36	0.07
$\delta_{\parallel} [\mathrm{rad}]$	[2.81,	[3.47]	0.13
δ_s [rad]	2.90	0.36	0.08
$\phi_s \text{ [rad]}$	-0.001	0.101	0.027

Source of systematics on ϕ_s :

- direct CPV ignored in fit
- angular efficiency model
- background model
 Improvement under investigation

LHCb-CONF-2012-002

Implications [Lenz et al., arXiv:1203.0238]

• Model independent analysis of NP in B_s mixing

$$M_{12}^{s} = \left| M_{12}^{SM,s} \right| \Delta_{s}$$

Major constraints on NP in M_{12} come from ΔM_s and φ_s

- B_s mixing is SM-like
- ~30% new physics contribution in B_s mixing still allowed at 3σ
- Probing NP at this level requires
 - improving precision of ϕ_s
 - reducing theory uncertainty in SM prediction of ΔM_s
 - new measurement of a_{fs}^s

& LHCb ΔM_e $\Delta \Gamma_s \& \tau_s^{FS}$ SM point $\Delta m_d \& \Delta m_s$ $|\mathsf{m} \Delta_{\mathsf{s}}|$ ϕ^{Δ} s-2 β s LHCb ϕ_i $A_{SL} \& a_{SI} (B_{d}) \& a_{SI} (B_{s})$ New Physics in $B_{s} - \overline{B}_{s}$ mixing -2 -1 2 3 -2 1 $\mathbf{Re}\Delta_{\mathbf{s}}$

Anomaly with D0 dimuon asymmetry

Conclusions and outlook

- Study of CPV in $B_s \to J/\psi \varphi$ advanced greatly
- LHCb new preliminary result consistent with the SM
 - $\phi_s = -0.001 \pm 0.101 \pm 0.027$ rad
 - $-\Delta\Gamma_{\rm s} = 0.116 \pm 0.018 \pm 0.006 \text{ ps-1}$
- Constraint on NP in B_s mixing significantly improved
- Quest for subleading level NP in B_s mixing requires higher precision and complementary measurements
- LHCb prospects
 - 5fb-1 before 2018: $\sigma(\varphi_s) \sim 0.025$ rad in $B_s \rightarrow J/\psi \varphi$
 - LHCb upgrade: $\sigma(\phi_s) \sim 0.008 \text{ rad}$ in $B_s \rightarrow J/\psi \phi$
 - More b \rightarrow ccs modes (see L. Zhang's talk) and a_{fs}^{s}

Backup slides

CPV and Baryogenesis

The source of current matter domination over antimatter is unknown. CPV is one of the three necessary conditions (Sacharow 1967)

The unique source of CPV in Standard Model is a single phase in the CKM matrix

CPV predicted in SM gives $\Delta n_{\text{baryon}}/n_{\gamma} \sim O(10^{-20})$. It is 10¹⁰ too small. There must be come other CPV beyond SM

LHCb detector

LHCb is a single arm forward spectrometer: $1.9 < \eta < 4.9$ Dedicated for study of CP violation and rare B decays: all B species; large B cross section; efficient, flexible trigger

Features:

Precise and robust vertexing and tracking

Good particle identification (hadron, muon, electron, photon)

About 1 fb⁻¹ collected at 7 TeV in 2011 run

Separating CP eigenstates

Different CP eigenstates are statistically separated in maximum likelihood fit using angular information

Angular efficiency accounted for in fit according to full Monte Carlo simulation

Time evolution for refernece

$$\begin{split} |A_{0}|^{2}(t) &= |A_{0}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta m t)], \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta m t)], \\ |A_{\perp}(t)|^{2} &= |A_{\perp}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta m t)], \\ \Im(A_{\parallel}(t)A_{\perp}(t)) &= |A_{\parallel}||A_{\perp}|e^{-\Gamma_{s}t}[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{s}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m t)], \\ \Re(A_{0}(t)A_{\parallel}(t)) &= |A_{0}||A_{\parallel}|e^{-\Gamma_{s}t}\cos(\delta_{\parallel} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{\perp})\cos\phi_{s}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ \Im(A_{0}(t)A_{\perp}(t)) &= |A_{0}||A_{\parallel}|e^{-\Gamma_{s}t}[-\cos(\delta_{\perp} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{0})\cos\phi_{s}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ |A_{s}(t)|^{2} &= |A_{s}|^{2}e^{-\Gamma_{s}t}[\cos\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{0})\cos\phi_{s}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ |A_{s}(t)|^{2} &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\parallel} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s}\sin(\Delta m t)], \\ \Im(A_{s}^{*}(t)A_{\parallel}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[\sin(\delta_{\perp} - \delta_{s})]\cosh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s}\sin(\Delta m t)], \\ \Im(A_{s}^{*}(t)A_{\perp}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\parallel} - \delta_{s})\cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s}\sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\perp} - \delta_{s})]\cosh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s}\sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\perp} - \delta_{s})\cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s}\sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{0}|e^{-\Gamma_{s}t}[-\sin(\delta_{0} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin(\delta_{0} - \delta_{s})\cos\phi_{s}\sin(\Delta m t) + \cos(\delta_{0} - \delta_{s})\cos(\Delta m t)]. \end{aligned}$$

25

Systematic uncertainties

LHCb-CONF-2012-002

Source	Γ_s	$\Delta\Gamma_s$	A^2_\perp	A_0^2	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	_	-	-	-	-	-
Production asymmetry ($\pm 10\%$)	0.0002	0.002	-	_	-	-	-	-	0.008
CPV mixing & decay (\pm 5%)	0.0003	0.002	-	_	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

Systematics under control.

Improvement under way: better treatment of background and nuisance asymmetries.

a^{s}_{fs} : awaiting LHCb to clarify

- If $a_{fs}^s = |\Gamma_{12}/M_{12}|\sin\phi \neq 0$: B_s mass eigenstate \neq CP eigenstate
- SM: $\varphi = 0.22 \pm 0.06^{\circ}$, $a_{fs}^{s} = (0.29 \pm 0.09) \times 10^{-4}$ [Lenz, Nierste, arXiv1102.4274]
- Mainly affected by NP in M_{12} (go away) $\phi = \phi^{SM} + \arg(M_{12}/M_{12}^{SM}) - \arg(\Gamma_{12}/\Gamma_{12}^{SM})$

- A^{s}_{fs} measured in $B_{s} \rightarrow D_{s}^{-}\mu^{+}X$ $a^{s}_{fs} = (-17 \pm 91^{+14}_{-15}) \times 10^{-4}$ [D0, PRD82 (2010) 012003]
 - Anomalous same-sign dimuon asymmetry [D0, PRD84 (2011) 052007]

 $A^b_{SL} \approx 0.6a^d_{fs} + 0.4a^s_{fs} = (-78.7 \pm 17.1 \pm 9.3) \times 10^{-4}$

c.f. SM: $A^{b}_{SL} = (-2.3 \pm 0.3) \times 10^{-4}$

• LHCb measurement of a^{s}_{fs} in untagged $B_{s} \rightarrow D_{s}^{-}\mu^{+}X$ in progress

LHCb publication

PRL108 (2012) 101803

0.37 fb⁻¹, 7 TeV pp collision 8500 signals

Effective tagging efficiency (2.29 ±0.07 ±0.26)%

Effective time resolution 50 fs

CDF publication

PRD85 (2012) 072002 5.2fb⁻¹, 1.96 TeV pp collision 6500 signals

Effective tagging efficiency: same side kaon $(3.5 \pm 1.4)\%$ opposite side $(1.2 \pm 0.2)\%$

Effective time resolution 100 fs

D0 publication

PRD85 (2012) 032006 8fb⁻¹, 1.96 TeV pp collision 6500 signals

Parameter	Default	$\sigma_A(t)$	$\sigma_B(t)$	$\Gamma_{\phi}=8.52~{\rm MeV}$
$ A_0 ^2$	0.553 ± 0.016	0.553 ± 0.016	0.552 ± 0.016	0.553 ± 0.016
$ A_{\parallel} ^2/(1- A_0 ^2)$	0.487 ± 0.043	0.483 ± 0.043	0.485 ± 0.043	0.487 ± 0.043
$\overline{\tau}_s$ (ps)	1.417 ± 0.038	1.420 ± 0.037	1.417 ± 0.037	1.408 ± 0.434
$\Delta \Gamma_s \ (\mathrm{ps}^{-1})$	0.151 ± 0.058	0.136 ± 0.056	0.145 ± 0.057	0.170 ± 0.067
F_S	0.147 ± 0.035	0.149 ± 0.034	0.147 ± 0.035	0.147 ± 0.035