

An eventful six months!

The first Heavy Ion run!

- The Accelerator complex worked wonders: very fast startup and excellent performance
- The detector worked beautifully
- The "first Physics" did marvels: five papers by the end of 2010
 - Confirmed ALICE readiness

A short but fruitful shutdown

- The EMCAL installation was completed successfully
- 3 more TRD modules
- Upgrade of the DAQ and more...

A fast restart

- Recommissioning + run-in of new detectors and trigger optimization
- 2.76 TeV pp run to accumulate reference data for PbPb comparison at the same energy
 - 35 hours of running
 - Excellent LHC performance
 - Excellent ALICE response with 94% running efficiency

Now running, while...

- Strong thrust for data analysis in view of QM conference in May
- Progressing on 7 TeV more complex analyses
- Organizing the preparation for upgrades

Collaboration News

Detector Status

Physics Results

Outlook

Collaboration News

New Institutes

- Gahauti Univ (Assam, India) & Bose Institute (Kolkata, India)
 Physics, Upgrades
- KISTI (Korea): 'associate member status'Computing

Applying

Suranaree University of Technology (SUT) (Thailand) 'associate member'
 Computing

Ongoing Discussions

- Pinstech (Pakistan): 'associate member status',
 Physics, Computing
 - small computing cluster now up & running
- Egypt (initially via JINR),
 Lebanon (small group, associated via other ALICE institutes),

Worry: UK Funding

 still concerns about the UK funding ALICE after this July. We won't know if the UK continues to fund ALICE and at what level until sometime mid-July

More Collaboration News

- Elections: 2 Management Board Members
 - W. Carena (CERN) and T. Nayak (VECC)
- Appointments:
 - Deputy Spokesperson:
 - J. Wessels (Munster) and Y. Schutz (Nantes)
 - Deputy Chairperson of the Collaboration Board:
 - G. Zinovjev (Kiev) and J. Harris (Yale)
 - Upgrade Coordinator:
 - T. Peitzmann (Utrecht)
 - Deputy Physics Coordinator:
 - F. Antinori (Padova)
 - Co-conveners of
 - PWG1: D. Miskowiec (GSI),
 - PWG2: B. Hippolyte (Strasbourg)
 - PWG3: A. Dainese (Padova)
 - PWG4: H. Bueshing (Frankfurt)
- New Project Leaders:
 - ITS: L. Musa (CERN),
 - Muon Spectrometer: A. Baldisseri (CEA Saclay)
 - TPC: H. Appelshaeuser (Frankfurt)

In addition, the Spokesperson, CB chair, CC and EB Chair and Run Coordinator all started Jan 1 their mandate

Organizational efforts

- ALICE had a structure optimized for the construction phase. The data taking phase has called for a considerable reorganization. Some steps have been taken, some are ongoing, more will have to be taken. Here just the main ones.
 - Transformation of PWG1 mandate: assure all elements necessary for analysis,
 each with a well defined structure with 2 (or 3) persons in charge
 - Quality assurance, calibration, event characterization, PID, event and track selection, tracking and alignment, run conditions, embedding / mixing
 - Physics Board and all four PWGs meet weekly, so as to ensure continuous follow up and steering of the analysis efforts and fast feedback to Offline on physics priorities
 - Special effort in view of QM, coordinated by K. Safarik and F. Antinori
 - General optimization of Reconstruction and Calibration procedures, to provide better load balancing of computing resources with respect to analysis
 - Initiatives to promote junior scientists and students in the Collaboration (eg Junior's day each Alice Week)
 - Initiatives to improve transparency of decisions and availability of information

Detector Status

- Remarkable performance in 2010 with both protons and Pb beams, which has allowed very fast Physics results
- Some issues solved
 - A scheme for SSD and SDD ventilation providing acceptable humidity conditions to both has been found
 - The Air Cooling in the Magnet has been optimized and since then the PMD is running stable
- Few issues still open
 - SPD cooling: attempts to improve during the Christmas break did not succeed. Stable yet not satisfactory (10% to 20% of the detector not operational) => need to wait for the long shutdown for major intervention (being planned and prepared)
 - TPC Chambers: new gas mixture (pure Ne/CO₂) has improved the operation at high rate, but still some sparks appear. A dedicated study is planned for the next two weeks, with in sight a solution which will allow routine high-rate running

Few Examples of ALICE performance: vertexing

- Track-based alignment with MillePede2 (cosmics + collisions)
- Alignment quality: transverse d₀ resolution from pp collisions

includes
prim. vertex
resolution
(with beam
constr. and
without the
track under
test)

- Resolution better than 75 μ m above 1 GeV/c, and very close to target performance, essentially the *same in PbPb and pp*
 - Residual misalignment < 10 μm
- Particle mass dependence as in MC → material corrections OK

Muon spectrometer alignment

No and 1st alignment

2nd alignment

To be compared with expected performance with perfect alignment of 70 MeV

 $\sigma_{J/\Psi} = (75 \pm 3) \text{ MeV/c}^2$

electron

ALICE Performance

24/09/2010

pions

TPC dE/dx

10

-10

More PID

Kaon p_T dist. stable & <u>decays</u>

Strange particle signals in Pb-Pb: check of tracking/vertexing quality

$\underline{K^0_S}$, Λ in TPC+ITS:

Mass widths are independent of centrality

π⁰ inv. mass peaks in Pb-Pb

 $\pi^0 \rightarrow \gamma \gamma$ in PHOS:

 $\pi^0 \rightarrow \gamma \gamma$ in EMCAL:

$$\pi^0 \rightarrow \gamma \gamma \rightarrow e^+e^- e^+e^- TPC$$
:

2010: Data Acquisition and processing

DAQ PerformancePeaks up to 2.5 GB/s

Computing: Resources usage

ALICE has ~ 15-16k job slots, consistent with average use. Excellent stability of the central GRID services. Dips: occasional fluctuations in the workload due to job dependencies and data availability for analysis, and to the fluctuations in the centre's availability. Peaks: opportunistic use of free resources for which our system is particularly efficient.

Grid power - computing centres contribution

62 T2s, 6T1s, 20K CPU cores running in parallel 10PB of disk and tape storage... expanding! (thanks Funding Agencies..)

The 2.76 TeV pp Run

- Aim: 35 hours of data taking to achieve
 - > 50 Million MB events after physics selections
 - A van der Meer scan
- ACCOMPLISHED
 (in record time, essentially all during the weekend of March 26-27 congratulation to the LHC team!)
- High running efficiency, collected 74 M minimum bias events and 10 M of rare triggers (Muon, EMCAL: 18 nb⁻¹), enough for J/psi and charm
- Analysis proceeding very fast (reconstruction already complete) => even rare probes OK

J/ψ and D⁰ signals

ALICE shutdown work

ALICE detector 2010

ALICE detector 2011

3 TRD addedd (now 10/18)

ALICE has made a very efficient use of the Xmas break:

- Installation EMCal and TRD (work during Xmas and NY)
- Upgrades (DAQ) and repairs (TPC FEC)
- · Maintenance on CV and gas equipments
- New cooling system for PMD

Wonderful support from Survey, Transport, VAC, CV and EL groups!

ALICE Results with pp

AIMS:

- collect 'comparison data' for heavy ion program
 - many signals measured 'relative' to pp
- comprehensive study of MB@LHC
 - tuning of Monte Carlo (background to BSM)
- soft & semi-hard QCD
 - very complementary to other LHC experiments
 - address specific issues of QCD
- very high multiplicity pp events
 - $dN_{ch}/d\eta$ comparable to HI => mini-plasma?

Final Results

- ⇒ N_{ch} multiplicity & distributions
 - 900 GeV:
 - 900 GeV, 2.36 TeV:
 - 7 TeV:
- ⇒ pbar/p ratio (900 GeV & 7 TeV)
- ⇒ Momentum distributions(900 GeV)
- ⇒ Bose-Einstein correlations (900 GeV)
- \Rightarrow Strangeness $(K^0, \Lambda, \Xi, \Omega, \phi)$
- □ Identified charged particle spectra in pp at 900 GeV
- ⇒ Pion Bose-Einstein correlations in pp at 0.9 TeV and 7 TeV
- Under Final Collaboration Review
 - \Rightarrow J/ ψ -> $\mu\mu$, e^+e^-
- Ongoing analyses (selection)
 - ⇒pQCD: jet fragmentation, ...
 - ⇒ Central Diffraction
 - ⇒Photon multiplicity, anitnuclei production,

EPJC: Vol. 65 (2010) 111

EPJC: Vol. 68 (2010) 89

EPJC: Vol. 68 (2010) 345

PRL: Vol. 105 (2010) 072002

PLB: Vol. 693 (2010) 53

PRD: Vol. 82 (2010) 052001

EPJC Vol. 71 (2011) 1594

accepted by **EPJC**

subm to Phys.Rev.D

(Advanced) Drafts

- ⇒ 7 TeV event properties: spectra, identified particles, strangeness, high multiplicity
- ⇒ pQCD: di-hadron correlations
- ⇒ pQCD: Event topology, Underlying event
- \Rightarrow Heavy flavour: charm (D⁰,D⁺, D*), heavy quarks (c,b) $\rightarrow \mu$, e⁻
- $\Rightarrow \pi^0$ spectra

Few recent results...

Charm and Beauty to leptons

Particle production

After $\phi \rightarrow K^+K^-$, $\Sigma^* \rightarrow \Lambda \pi$, $\Omega \rightarrow \Lambda K$, $K^* \rightarrow K \pi$, $\Xi \rightarrow \Lambda \pi$

Central diffractive production in ALICE central barrel

ALICE: good acceptance at low transverse momentum, rapidity gap defined with V0 and SPD

netise netises

- \rightarrow enhancement of f₀(980), f₂(1270) in double gap evts with N_{ch}=2
- \rightarrow no enhancement of $f_0(980)$, $f_2(1270)$ in double gap evts with $N_{ch}=3$

 \rightarrow central *exlusive* production of f_0, f_2

ALICE results with PbPb

Final Results

⇒ N_{ch} multiplicity

Rapidty density
PRL: Vol. 105 (2010) 252301

Centrality dependence PRL: Vol. 106 (2011) 032301

⇒ FLOW of charged particled PRL: Vol. 105 (2010) 252302

⇒ together with ATLAS di-jet paper, got PRL "Viewpoint", first for LHC

 \Rightarrow Suppression of high-p_T (R_{AA}) PLB: Vol. 696 (2011) 30

⇒ Bose-Einstein correlations PLB: Vol. 696 (2011) 328

Advanced Drafts

- ⇒ Identified particles: Baryon/meson ratio
- ⇒ Flow with identified particles

Ongoing analyses

(a few out of very many => aiming to submit about 40 papers to QM Conference in May)

- \Rightarrow J/ ψ -> $\mu\mu$, e⁺e⁻
- ⇒ Event structure from autocorrelations
- ⇒ Azimuthal Correlations of high-p_T particles
- ⇒ Identified particles: strangeness, resonances ...
- $\Rightarrow \pi^0$ spectra
- \Rightarrow Heavy flavour: charm (D⁰,D⁺, D*), heavy quarks (c,b) \rightarrow μ , e⁻

Characteristics of Central Pb+Pb Collisions at 2.76 TeV

Energy density from dN_{ch}/dη

- $dN_{ch}/d\eta = 1599 \pm 4 \text{ (stat.)} \pm 80 \text{ (syst.)}$
- constrains / rules out models
- 100 times cold nuclear matter density
- ~3 times the density reached at RHIC (ε ≈ 15 GeV/fm³)

Volume and lifetime from HBT interferometry

- Freeze-out volume
 ~ 300 fm³
- ~ 2 times the volume measured at RHIC (AuAu@200 GeV)
- Lifetime until freeze-out ~ 10 fm/c

Particle production in Pb-Pb: **Azimuthal anisotropy**

Initial spatial anisotropy

Final momentum anisotropy

Reaction plane defined by "soft" (low p_T) particles $\Delta\varphi = \varphi - \varphi^{Reaction~Plane}$

Elliptic flow
$$rac{dN}{d\Delta arphi} \propto 1 + 2 v_2 \cos(2\Delta arphi)$$

Measure Properties of the Medium Created in Pb+Pb Collisions

Most extreme state of matter ever created in the lab ...

- 1. Collective behavior observed in Pb-Pb collisions at LHC (+0.3 v_2^{RHIC}) $v_2(p_T)$ similar to RHIC almost ideal fluid at LHC?
- 2. New input to the energy dependence of collective flow
- 3. Additional constraints on Eq-Of-State and transport properties

Jet quenching via hadron suppression

#(particles observed in AA collision per N-N (binary) collision)

Ratio =

#(particles observed per p-p collision)

- 1. Strong depletion of high-pT hadrons in A-A collisions
 - parton energy loss (jet quenching)
- 2. Qualitatively new feature : evolution of R_{AA} as a function of p_T
- 3. New, much anticipated constraint for parton energy-loss models

Di-hadron Correlations in PbPb

Leading particle

Two-particle correlations

conditional [per-trigger] yields

$$\frac{1}{N_{trig}}\frac{dN_{assoc}}{d\Delta\varphi}\quad\text{and}\quad \frac{1}{N_{trig}}\frac{d^2N_{assoc}}{d\Delta\varphi d\Delta\eta}$$

At Low- p_T :

Ridge

Hydrodynamics, flow

At High-p_T:

Quenching/suppression, broadening

Powerful instrument to study system characteristics, including Jet Quenching (recoil jet suppression)

Azimuthal

Correlation ~ 180 deg

Heavy quarks in Pb-Pb

- Charm via D mesons, beauty via leptons (e, μ):
 - → colour charge and mass dependence of energy loss

 $D^0 \rightarrow K\pi$, $D^+ \rightarrow K\pi\pi$ via secondary vertex reconstruction

central Pb-Pb!

minimum bias Pb-Pb

Quarkonia: suppression or regeneration?

 $J/\psi \rightarrow \mu\mu$ at forward rapidity, starting from p_t^0

Expect \sim 2000 J/ ψ from full 2010 statistics

Charged Jets in PbPb

Detailed characterization of the background is a prerequisite for jet reconstruction in PbPb

Event-by-event background subtracted, Not unfolded. Effect of background fluctuations/smearing apparent. Detailed correction currently under preparation.

Pb+Pb π^0 via conversions

And more...

Single and mutual EMD with ZDC

ZDC signal: Single EMD + Mutual EMD + Nuclear effects

Mutual EMD event selection: ZNC && ZNA + ZDC time selection +

(ZEM1<10 | | ZEM2<10) estimated from simulations to reject nuclear events

Data: 1n peak resolution ~20% consistent with RELDIS calculation

Ratios: 1n/2n; 1n/3n; 2n/3n are under investigation

Anti Nuclei: Anti-Alpha candidates in Pb-Pb

Time of flight (sensitive to m/z-ratio):

$$m = \frac{z \cdot R}{\sqrt{\gamma^2 - 1}}$$

$$<rac{dE}{dx}> = rac{4\pi Ne^4}{mc^2}rac{z^2}{eta^2}(rac{1}{2}\lnrac{2mc^2E_{max}eta^2\gamma^2}{I^2} - rac{eta^2}{2} - rac{\delta(eta)}{2})$$

Three candidates confirmed by TOF analysis

'Single Events'

- Study the individual event
 - Access properties characteristic of critical phenomena

OUTLOOK

Running Plans for pp in 2011

Aim: continue to collect integrated luminosity for comparison with the $\sim 30~\mu b^{-1}$ foreseen in the 2010- 2011 Pb runs (more will be needed for the comparison of the future High-Luminosity HI runs)

- Need:
- double min bias statistics to reach original goal of ~ 10⁹ events
 - in 2010, ~ 700 M min bias on logbook
 → ~ 500 M for good runs, physics selection
- At least ~ 2 pb⁻¹ for rare triggers

- A possible scenario:
- ~ 135 days of pp physics
- min bias running
 - 10 kHz interaction rate
 - 800 Hz DAQ rate
 - → ~ 16 M ev/day
 - \rightarrow 500 M min bias in \sim 30 days
- rare trigger running
 - Increase progressively interaction rate towards 100 kHz
 - 10% dead time (100 Hz trig rate)
 - \rightarrow ~ 20 nb⁻¹/day (daily stat ~ total 2010)
 - \rightarrow 2 pb⁻¹ in 100 days

ALICE Program

- Baseline Program as in the original, approved ALICE proposal:
 - initial Pb-Pb run in 2010 (< $1/20^{th}$ design L, i.e. ~ 3 x 10^{25})
 - 2-3 Pb-Pb runs (medium -> design Lum. $L \sim 10^{27}$, 2.75 TeV -> 5.5 TeV) **integrate at** least ~ 1nb⁻¹ at the higher energy, and as close as possible to 1nb⁻¹ at the lower one
 - 1-2 p A runs (measure cold nuclear matter effects, e.g. shadowing)
 - 1-2 low mass ion run (energy density & volume dependence) typ. ArAr
 - <u>running with pp</u> (comp. data, genuine pp physics)

=> Baseline Program more than fills the "HI runs" to ~ 2020

- Following or included:
 - lower energies (energy dependence, thresholds, RHIC)
 - additional AA & pA combinations
- NEXT (after long shutdown at the end of the decade):
 - details of program and priorities to be decided based on results, but
 Increase int. Luminosity by an order of magnitude (to ~ 10nb⁻¹)

```
Address rare probes (statistics limited: for ex., with 1 \text{nb}^{-1}: J/\Psi: excellent, \Psi': marginal, Y: ok (14000), Y': low (4000), Y'': very low (2000))
```

Outlook of ALICE HI runs until 2020 (evolving!)

- 2011
 - PbPb at higher luminosity (~1.4x10²⁶ cm⁻²s⁻¹)
 3.5 TeV at intermediate (200ns) or nominal (100ns) bunch spacing
 - Feasibility test for p-Pb running (MD + ?)
- 2012
 - Either pPb/Pbp or further PbPb running
- 2013
 - Shutdown, relocation of collimators
- 2014
 - PbPb at higher luminosity and top energy 5.5 TeV
- 2015
 - Continue PbPb at top energy to get to 1 nb⁻¹
- 2016
 - Depending on outcome of runs in 2015/16 further running of PbPb or pPb
- 2017
 - Shutdown; installation of dispersion suppressor collimator at IP2 (if not done previously)
- 2018
 - PbPb at luminosity >5x10²⁶ cm⁻²s⁻¹ at top energy 7 TeV
- 2019
 - Physics with pPb
- 2020
 - Physics with ArAr at very high luminosity (up to 10²⁹ cm⁻²s⁻¹)
- 2021
 - Shutdown

ALICE Upgrades

- ALICE has evolved considerably from its Technical Proposal, in particular:
 - the TRD has been approved much later than the other central detectors
 - 7/18 installed
 - 3 more in winter 2010/2011
 - complete by 2012
 - a new EMCAL calorimeter (very important for jet-quenching) has been added recently
 - US project, with French and Italian (+ China and Japan for DCAL) involvement.
 - 4 SM installed in 2009 out of 11
 - Complete in winter shutdown 2010/2011
 - Further 6 SM on opposite side in phi (DCAL) approved in 2010
 - DCAL Complete by 2012, installed in 2013
- These additions have been handled through specific MoU addenda with the proponents of the projects

Upgrades roadmap

- ALICE is considering several improvements that would enhance its Physics Reach => not all will necessarily be approved and implemented
- Numerous groups have expressed interest and are active in design and R&D
- The Collaboration is discussing scientific priorities and feasibility to define a coherent global plan
 - Continuous process of internal review
 - Progressive definition of the costs
 - Definition of the procedures
 - Addendum to MoU for individual projects or Upgrade phases
 - Sharing procedure of Common Costs (typically about 10% of the project costs)
- A roadmap has been defined:
 - Expressions of Interest to be defined now (April)
 - Physics Workshop 12-13/7/2011 at CERN
 - Lols in October
 - Decisions in the Collaboration
 - Submission to the LHCC

Upgrade projects

Detector Upgrades for >= 2013. Objectives: Extend the Physics reach (independent on \mathcal{L}) Improve the rate capability (in view of higher AA \mathcal{L})

- High rate upgrade:
 - increase rate capability of TPC (faster gas, increased R/O speed)
 - \rightarrow rare hard probes (Υ , γ -jet, ...)
- DAQ, TRIGGER & HLT upgrades:
 - → more bandwidth, more sophisticated and selective triggers
- Particle ID upgrade:
 - extend to p_T range for track-by-track identification to O(20) GeV/c
 - → new physics interest, based on RHIC results
- Forward upgrades (probably to be split into 2 phases):
 - new detectors for forward physics (tracking & calorimetry)
 - → low-x in pA, AA
 - → Extend ALICE coverage for diffractive Physics
- Inner Tracking upgrade:
 - 2nd generation vertex detector (closer to beams, extended acceptance, capabilities)
 - → heavy flavour baryons, fully reconstructed B, ...

Summary

- ALICE is now harvesting after 20 years of preparation!
 - 14 papers, some already with considerable impact
 - 18 more in advanced preparation stage
 - Many more to come
- The Detector continues to provide excellent performance, and ALICE as a whole confirms its readiness and commitment
- More challenges ahead!

We count on your continued support...

THANK YOU!