

↓ Data 2012

↓ Data 2011

↓ MC 2011

↓ Data 2010 ↓ MC 2010

↓ Material before 2010

Summary of latest res

Channel

SM H combination

SM H to diphoton

↓ Post-Moriond 201

↓ Moriond EW 2012

+ February 2012 Pul

↓ CERN Council 201 ↓ HCP 2011 ↓ LP 2011

+ EPS and more 201 + Moriond-timescale

Confere

ATLAS-ATLAS

More Information...

http://www-cdf.fnal.gov/physics/new/hdg/Welcome.html http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_12/ https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

Publications 2011 data, part 1

SM H to ZZ(*) to 41 ATLAS-CONF-2011-162 4.8 Dec 2011 arXiv:1202.1415 4.8 Feb 2012 SM H to WW(*) to Iviv ATLAS-CONF-2012-012 4.7 Mar 2012 arXiv:1112.2577 2.05 Dec 2011

dicatione (full 2011 datas

Precision Electroweak Measurements

H Decays

Standard Model specifies decay branching ratios vs. $m_{_{\rm H}}$

At high mass ($m_{\mu} > 160 \text{ GeV}$):

- $H \rightarrow W^+W^-$
- $H \rightarrow ZZ$

provide ~all the sensitivity, we subdivide by the W/Z decay modes

At low mass ($m_{_{\rm H}} < 160 \text{ GeV}$):

- $H \rightarrow b\overline{b}$
- $H \rightarrow \tau^{+} \tau^{-}$
- H→γγ (*BR* < ~0.2%)
- H→WW(*)
- H→ZZ(*)

all play a role...

Tevatron Data Sample

Run-2 2001-2011 √s=1.96 TeV

12 fb⁻¹ delivered at 1.96 TeV 10-11 fb⁻¹ recorded by CDF and D0

Peak luminosity 4.3 x 10³² cm⁻²s⁻¹

Tevatron Data Sample

Run-2 2001-2011 √s=1.96 TeV

Key channels:

- WH→ℓvbb
- ZH→vvbb/
- WW(*) \rightarrow ℓ v ℓ v (around 2m_w)

H→bb

plus searches in many other channels with lower

ered at 1.96 TeV ded by CDF and D0

2009

Fiscal Year 08 - Fiscal Year 07

04 🔹 Fiscal Year 03 🤜 Fiscal Year 02

2010

2011

2012

Peak luminosity 4.3 x 10³² cm⁻²s⁻¹

2007

r 09

2008

7

Tevatron H Search

Tevatron Higgs searches are well established, major improvements vs time have been delivered

For new 2012 results:

- Very high performance, optimised, b taggers
- b-jet specific energy scale corrections (CDF updated)
- Tuned and improved lepton ID, missing-E_τ algorithms
- Multivariate discriminant analyses

Tevatron - Proof of Principle

Measurement of WZ/ZZ production

- One leptonic W or Z decay
- Other Z→bb: use b-tagging algorithms as developed for the H search

 $\sigma(WZ+ZZ) = 4.47 \pm 0.64(stat) \pm 0.73(syst) \text{ pb}$ Cf: 4.4 ± 0.3 pb expected from SM

Significance is ~4.60 from zero

Tevatron - Discriminants

Analyses use highly-optimised multivariate analysis (MVA) discriminants to get the most from the data

Main Channel Limits

Combination of CDF & D0 includes detailed consideration of correlated errors, especially systematics

This page: combined subchannels and experiments for bb and WW analyses separately

"Broad excess" seen in $H \rightarrow b\overline{b}$ analysis, mainly from CDF

Tevatron Combined

Putting all channels together...

Expected 95% CL exclusion in the absence of a Higgs signal 100 < m_H < 119 GeV and 141 < m_H < 184 GeV

Actual exclusion at 95% CL 100 < m_H < 106 GeV and 147 < m_H < 179 GeV

Local p-value:

Probability that a background-only experiment is as signal-like as the data Interpretation requires correcting for the look-elsewhere effect (LEE)

> Max local significance: 2.7σ Global significance after LEE (100-200 GeV range): 2.2σ

LHC Data Sample

2010/2011 √s=7 TeV limited by assessed risk of dipole magnet quenches raised to 8 TeV in 2012

2010: ~0.04 fb⁻¹ delivered to ATLAS, CMS

2011: initial goal 1 fb⁻¹, delivered by June Total delivered close to 6 fb⁻¹ Superb LHC performance

ATLAS and CMS

- data-taking efficiencies ~90-94%
- data quality efficiencies ~90%
- ~5 fb⁻¹ used for analyses shown here

2011 peak luminosity 3.6 x 10³³ cm⁻²s⁻¹

2012 is just starting, peak luminosity already reached 6.0 x 10³³ cm⁻²s⁻¹

Measuring other SM Processes

Illustrates quality of

- Theoretical background calculations/models
- Understanding of detector performances

LHC Sensitivity with 2011 Data

Most sensitive channels (each in turn, as m_H increases) $H \rightarrow YY$ $H \rightarrow WW^{(*)} \rightarrow \ell v \ell v$ $H \rightarrow ZZ^{(*)} \rightarrow \ell \ell \ell \ell$ $H \rightarrow ZZ \rightarrow \ell \ell v v$

Crucial further consideration: event-by-event mass resolution - here $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^{(*)} \rightarrow \{ \{ \} \}$ dominate: fully reconstructed, no-jets, decay products

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$

- Most sensitive channel at high $m_{_{\rm H}}$
- Missing neutrinos, so mass resolution poorer than $H \rightarrow 4\ell$
- Selection adjusted for different $m_{_{\rm H}}$
- Use transverse mass (m_T) of E_T^{miss} and *ll* system as discriminating variable to derive limits

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$

120⊢[']

- Statistically powerful, but poor mass resolution ~20%
- Important especially at low to intermediate m_u
- Analyses subdivided by *l* flavour & jet multiplicity
- Large backgrounds (WW, tt, ...), main ones measured with data control regions
- Typically use m_{τ} distribution or multivariate classifier output to set limits

BDT Classifier

$\mathbf{H} \rightarrow \boldsymbol{\ell}\boldsymbol{\ell}\boldsymbol{\ell}\boldsymbol{\ell}$

"Golden channel"

- Clean low background, offers best S/B ratio
- Full reconstruction excellent mass resolution
 - $\sigma/m \sim 1-2\%$ at low mass
 - dominated by $\Gamma_{\!_{\rm H}}$ above ~350 GeV
- Low mass: at least one Z off-shell, but clean signature, excellent lepton ID, allows $p_{T}(\ell)$ cut as low as 5-7 GeV

$\mathbf{H} \rightarrow \boldsymbol{\ell}\boldsymbol{\ell}\boldsymbol{\ell}\boldsymbol{\ell}$

"Golden channel"

- Clean low background, offers best S/B ratio
- Full reconstruction excellent mass resolution
 - $\sigma/m \sim 1-2\%$ at low mass
 - dominated by $\Gamma_{\!_{\rm H}}$ above ~350 GeV
- Low mass: at least one Z off-shell, but clean signature, excellent lepton ID, allows $p_{T}(\ell)$ cut as low as 5-7 GeV

One of the three low- $m_{4\ell}$ events selected by ATLAS, $m_{4\ell}$ =124 GeV

Run: 182796 Event: 74566644 2011-05-30 07:54:29 CEST

Limits from $H \rightarrow \ell \ell \ell \ell$

SM H production 95% CL exclusion:

- ATLAS: 134-156, 182-233, 256-265, 268-415 GeV expect 136-157, 184-400 GeV
- CMS: 134-158, 180-305, 340-465 GeV

Full reconstruction of H decay

- Excellent mass resolution ~ 1.5% at best
- But tiny BR ~0.2%
- Backgrounds are large, but smoothly varying

Look for a peak in the m_{vv} spectrum...

- Account for varying mass resolution
 - either binning (e.g. $p_{Tt}(\gamma\gamma)$, shower shape, η , conversions, ...)
 - or event-by-event in a multivariate analysis (CMS)
 - CMS finds VBF channel (exclusive forward jets) particularly sensitive

24

Expected limit is around 1.2-1.6 times SM cross-section

We do expect fluctuations due to statistics and the good mass resolution

To analyse if the fluctuations seen are significant, we need to look at the p-value

Local p-value

Probability that a background-only experiment is as signal-like as the data, for a given m_{μ} signal shape

Interpretation requires correcting for the look-elsewhere effect (LEE)

Significances:

- ATLAS at 126.5 GeV
 - Local 2.9 σ , global 1.5 σ
- CMS at 125 GeV
 - Local 2.90, global 1.60

LEE over range 110-150 GeV

Other SM Higgs Search Channels

Many other channels investigated in detail by CMS and ATLAS, but I have no time...

Individual Experiment Combination p-values

Summary (not Conclusion!)

Major steps forward in Higgs searches in the last year

- Tevatron
 - Substantial step forward in analysis sensitivity
 - Full data sample analysed in main channels
 - Modest excess in the low-mass region, dominated by the $b\overline{b}$ channel
 - Global significance of the excess is ${\sim}2.2\sigma$
- LHC
 - Production of the Standard Model Higgs now excluded over a huge mass range ~128-600 GeV
 - In the low-mass region around 125 GeV
 - both ATLAS and CMS see an excess of events, individually of marginal significance
 - consistent both with background fluctuations or a SM Higgs being there...

Forward Look

The LHC is running in 2012 at √s = 8 TeV, aiming for ~15 fb⁻¹ By the end of this year we should have a *much* clearer picture

By yesterday evening, LHC had delivered 2.8 fb⁻¹ at 8 TeV

Backup

Does the Excess Look Like a SM Higgs?

Does the Excess Look Like a SM Higgs?

Tevatron - Proof of Principle

Tevatron - Individual Experiment Limits

ATLAS Combination

ATLAS-CONF-2012-019

Detectors Designed for the Higgs Search

110

100

90

80

70

60

50

The LHC detectors are designed for the Higgs search

- Excellent lepton and photon ID (η coverage, jet rejection, resolution...) despite "thick" trackers
- Excellent E_{T}^{miss} performance
- Hermetic calorimetry out to |n|~5
- Detector design and sophisticated algorithms against pileup

