The Dirac and Maxwell egs. can be derived from the
lagrangian

_ 1
Lopp = V(i Dy — M)W — mﬁms . (11)

The coupled Euler-Lagrange field egs. are then (10),

plus
O Frn = gWyn WV = jp (12)

where j, is the electromagnetic current of the charged
fermion. From (12) we can derive the charge conser-

vation
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d

where Q = \%x jo(x) . (13)
e T he massless photon has two degrees of freedom.
2
e A photon mass Lmass = %&m@ breaks gauge invari-
ance and describes three degrees of freedom.

e [ he propagator of a massive photon is found from

1, 1

»\gw
IM»JS: + %\fmﬁ - M\»SES:AD + MX) — Omdn] A™,

Ant(@ = y) = [gmn (O 4+ M3) — 0mdn]d*(z —y) (14)
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Therefore, in momentum space (exercice)

AT () = A (15)

e Due to the current conservation 903, = 0, the longi-
tudinal polarization does not contribute to amplitudes
— UV properties of the massless and massive photon
theories are the same.

e Experimental limit photon mass my < 10718 eV.
2.3. Non-abelian gauge theories.

U(1) is a particular case of unitary abelian transforma-
tions. Another case of particular interest : non-abelian

transformations.
27



MNon-commutative

R1 R2 # R2 R1 R1 : counter-clockwise rotation nwﬂ_”__“_ ahout the x axis
An object is rotated by 90° around two different azes  R2 : counter-clockwise rotation of 90 about the z axis

15t BEE_ m_:_ .._Ez_a

Q -

EZ Rl
Applying the same rotations in reverse order leads to a diflerent outcome

H R2 & R1 R2 :

15t rotation Ind rotation
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SU (n) transformations are described by matrices U, sat-

isfying
Ulu=uvUT=1 , detU=1. (16)

The simplest case is SU(2), proposed by Yang and Mills

in 1954. Simplest representation is a doublet

EH A%wv “G\HQQVEQé:mEQQvH mwm?é uﬁd

where 1, are the Pauli matrices. The number of gauge
bosons equals the number of generators (three for SU(2)).
Simplest to introduce a matrix

w3 Wl — E\m@v

_ ([ w3 V2w
wi+awz w3

N A,m%m ~-W3 v

29
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Exercice : show that
DV = (0 — igWm)W — (D) = UD,, WV |
if Wi — W/, =UW,U™ ! — M.SSSQL (18)
and the infinitesimal variation in component form
SWE = D% = 9mb® + ge W2 6° (19)
The field strength is built from
[ Dy, Dn) = —igFmn (20)

Exercice : show that
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For SU(2) this implies (exercice :)
Frn = OmWy — 0n Wy, + Qm@vnﬁ\%@S\M (21)

The Yang-Mills lagrangian is

Lyar = =g Fla P = = (O Wi — 0uWiA)?
g avbmyyen 9 b orrepydimyyen
IMm%n@SS\:S\ W T — Mm@@nm@%S\SS\:S\ "W
e Non-abelian gauge bosons have self-interactions, un-
like the photon ! Full Lagrangian describing interaction
of Yang-Mills fields with charged fermions

_ 1
L= W(iy" D — M)W — S F, F*"" . (22)
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Exercice : show that for an SU(2) doublet
Uiy D= M)W = T {53 (i7" O — M)+ Wi (1) ] W'
Field egs. are
(iv™ Dy — M)W = 0
0" Frn + Qm@@o\w?smﬁei — |©ﬂ_lkq\§wﬂ_\ (23)

2
on the r.h.s. is the SU(2) fermionic current j&

e Here 0% # 0 ; a massive field propagator is

AP (k) = §¢ : 24
() RNV (24)

e and the longitudinal polarization does contribute to

amplitudes.
32



— UV properties of the massless and massive YM theo-
ries are different. The Yang-Mills boson masses should
not be added by hand.
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3. Spontaneous symmetry breaking.

Symmetries (Noether theorem) — conserved charges.
There are however two ways the symmetries are real-
ized in nature :

i) Weyl-Wigner : vacuum state is invariant under the
symmetry — symmetry manifest in the spectrum and
interactions.

Ex: translations (momentum), rotations (angular mo-
mentum), U(1)em (electric charge)...

ii) Nambu-Goldstone : vacuum state not invariant un-
der the symmetry — symmetry not manifest.
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Ex : rotation (or parity) symmetry in ferromagnets,
SU(2) weak,» SU(2)1, x SU(2)p chiral symmetry of strong
interactions.
Coleman : "the symmetry of the vacuum is the sym-
metry of the world".
Simplest example of the NG realization is the Ising
model dimension d, N spins, of hamiltonian

H=-J)> 5,S,—-B) S, (25)

(2,7) ¢

with §; = +1. For zero magnetic field B = 0 the system

has a Z> symmetry S; — —5;.
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The magnetization
1 N

M = lim — S
m”OleOOZwMHA \AV

should therefore vanish. However

M=0forT>T., M #0 for T <T,, where kT, = 2dJ
(26)

hall " % T e dr i

_L.,,L,,_,,,r....:....d..!.f .._.\\\
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» rw Ly wxpm g gy
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3.1 The Goldstone theorem.

In a theory with continous symmetry, for every gener-
ator which does not annihilate the vacuum (T%®) £ 0
there is a massless, NG particle.

Ex: The O(N) linear sigma model.

N scalar fields & = (P, Do, - D), with lagrangian

_ 1 > Ko A oo
hlmgsev V(®), V(®) = me ._.Aavv (27)

The model has a continous O(N) symmetry acting as
¢ — R®P, with R a rotation matrix. The potential is

minimized for

12
P2 = 5N v (28)
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The vacuum manifold is O(N) invariant. By a rotation,

the ground state can be chosen to be

&g =(0,0---0) (29)

preserving an O(N —1) subgroup. Goldstone’s theorem:

we expect N — 1 massless particles, O(N)/O(N — 1).

38



In order to check this, we define a set of shifted fields:
®(z) = (7"(z),v+o(x)) , k=1---N-1, (30)
such that (%) = (¢) = 0. The lagrangian becomes
L= ((Onm)? + (0m0)?) — p20% ~ VA po
—V\ pro - W?M +7)? (31)

The manifest symmetry is indeed O(NN — 1), rotating

the ©'s. The physical masses are

m2 =22, m2, =0 (32)

Tk
. they are the NG bosons.

O(N —1) is realized a la WW, O(N) is realized a la NG.
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General (classical) proof of the Goldstone theorem. Con-
sider
1 2
L= mﬁmse@.v — V(®P;) (33)
and a global continuous symmetry
V(d; +6P;) = V(P;) , with §b; = %@ﬁmew (34)
that implies
oV
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Differentiating again and taking the vev, we get

o°v oV
— T2, 4+ —T%) =0 36
Ame%ﬁ. Pt 0D, ik) (36)
In the vacuum, \Sm@ = % IS the scalar mass matrix,

whereas A%nm.v = 0. Then we get

M2, (T%); = O (37)

If the vacuum is not invariant under the symmetry gen-
erator T% # 0, then T%v is an eigenvector of the mass
matrix M?2 corresponding to a zero eigenvalue

— the Goldstone theorem.

What happens if the symmetry is local (gauge) ?
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3.2 The Higgs mechanism.

Consider an abelian gauge theory
1 5

L= |M»TJ33 + _wse_m T a\AGv ) Awmv

With Dy, = O + iedpm, ® = w?f + id5), and scalar
potential
V= —p? |0 +A(@ )2 = |%Aew+er+wAew+erm w
(39)
invariant under the local U(1) transformations
d =@ AL — Ay, — w@:g (40)

We expand around the vacuum state
42



. tm v 1 .
o = /W| 5 ®@) = (vt drticn)  (41)

From the quadratic mass terms we find m${ = 2u?

mo = 0, SO ¢» is the Goldstone boson. New features

appear from the kinetic term

e2v2

2
— the gauge boson acquired a mass M2 = e?v2. But

D2 = Was&.vw F evAmdTés + A2 4. (42)

this can only happen if

Am(M4 = 0) 4+ ¢o — An(My # 0) (43)

This is indeed true and can be seen in various ways:
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i) The quadratic term can be diagonalized

1 1
IME‘QWS + MA@S%MvM + /\MQG\PSQS%M +
@M@M
2

where By, = Am + %@S@m. ¢> disappeared from the

quadratic part, and is absorbed into the longitudinal

e2v?

2
Bz, , (44)

A

1
— |NA®§m§ — @:mng +

component of the gauge field.

ii) The Goldstone can be eliminated altogether in the

unitary gauge

e v (v+p(z)) (45)

10
by the trans. ® — &' =e v, Ay — Al = A+ =0mb.
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In the unitary gauge, the lagrangian is
1
L= |mA$zvm+AmsLmksveézimm\svef%ebi/e&

Higgs mechanism, non-abelian case
Consider a gauge group G of rank r and scalar fields in
some irreducible n-dim. representation

1
L= = ™" 4 |[(0m - igT@ A% ) D)2 — V(d) (46)

with V the scalar potential minimized for (¥) = v, and
H € G the subgroup of rank s leaving v invariant

T =0 , a=1---s

T #0 , a=s+1---r (47)
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Unitary gauge parametrization ( Goldstone'’s)

Sl a(x)
eAMﬁv — ms MQ“%I_IH mNJ@ v sQADwv |—| \c : Ahvmv
V2
0. The gauge trans.

where (£a) = (p)

AN €a(x)
() — n_u\AHv =Ud , with U = mlsMUgHm._lH\H@

(%

Am — AL =U (Am + Wmsv U1 (49)

eliminates the Goldstone’'s from the lagrangian. The

resulting mass matrix of the vector fields is then

M2 = g (Tov) (Ty) ; (50)

r — s gauge bosons become massive.
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1
AL g, — m\msnmmjmwsmfr:. (51)

massless . massive

a7



4. The electroweak sector of the Standard Model.

4.1. Gauge group and matter content.

Standard model "unified” description of weak and
electromagnetic interactions. From the Fermi theory

of weak interactions

with Gp/vV/2 = g2/8M2, we know that we need at least

a charged gauge boson :\M and the photon A;,.
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