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Outline

● Introduction: particle transportation
● Hardware: host and device
● Software: device codes and interfaces
● Performance: CPU/GPU processing time
● Conclusions: lessons and outlooks
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Introduction
● How can we use many-core for Geant4?

● Geant4 performance studies with the CMS detector 

● geometry and processes are top libraries in lib count
● one of hot spots of processes is transportation

● Concurrent particle transportation engine
● study particle transportation on GPGPU
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Transportation
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TransportationManager
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EquationOfMotion

ClassicalRK4

G4Transporation::AlongStepGPIL for Charged Particles in B-Field
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Equation of Motion and Runge-Kutta Method
● Trajectories: equation of motion in a magnetic field

● 4-th order Runge-Kutta (RK4): 4 evaluations of f(x,y) 
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Runga-Kutta Driver with Adaptive Step Size
● Quick advance: miss distance <  dmax

● Accurate advance: truncation errors of step doubling in 
RK4: difference between one big step and two small 
steps - 11 evaluations of rhs of the equation of motion
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Problem Definition
● Isolate key components of Geant4 particle transportation

● evaluation of magnetic field (B) values
● rhs of the equation of motion in a given B
● evaluation of the 4th order Runge-Kutta (RK4)

● Measure performance with the Runga-Kutta driver for 
adaptive step size control

● Test Geant4 transportation with realistic data

● prepare bundles of tracks from simulated events
● measure processing times for AlongStepGPIL on 

CPU and GPU
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Hardware: Host and Device
● Host: AMD Opteron Process 6136

● CPU: 2.4 GHz, Processors: 32 cores
● L1/L2/L3 Cache Size: 128/512/12288 (KB)
● L3 Cache speed: 2400 MHz

● Device: NVIDIA Tesla M2070
● GPU clock speed: 1.15 GHz
● 14 Multiprocessors x 32 CUDA Cores: 448 CUDA cores
● Memory: global 5.4 GB, constant 65 KB, shared 50KB
● L2 Cache size: 786 KB
● Maximum thread per block: 1024
● Warp size: 32
● CUDA Capability Major/Minor: 2.0
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Software: Interface and Device Codes
● An experimental software environment: cmsExp

● CMS geometry (GDML) and magnetic field map (2-dim grid of 
volume based field extracted from CMSSW)

● Geant4 application with an interface to device codes or a 
standalone framework

● Device codes I
● literal translation of Geant4 C++ classes to C structures
● use same implementation for both __host__ and __device__
● input data to device memory: magnetic feld map and bundles of 

secondary tracks produced by cmsExp

● Device codes II optimized for GPU
● 4th order Runge-Kutta, field map with texture memory and etc. 
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Transportation
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Performance Measure
● Performance measurements in execution time

● 1 CPU vs. 448 GPU cores
● cuda event timer (cudaEventElapsedTime) 
● GPU time = kernel execution + data transfer
● default kernel: blocks=32, threads=128
● default step size = 1cm 
● default size of tracks/bundle = 100K tracks
● errors: RMS of measurements with 100 events  
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Performance: Data Transfer Rate
● Data transfer speed for track bundles between host and 

device

● Minimize data transfer between host and device
● bandwidth device-device is O(102) (GB/sec)
● one large transfer is better than many small transfers
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Baseline Performance: Single Thread GPU
● <<<BLOCK=1,THREAD=1>>> for 4th order Runge-Kutta

● Bottom line: 1 GPU core ≈ (1/18) CPU
● clock speed (½), floating point calculation (¼), and etc. 
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Performance: Kernel with 32 Blocks
● RK4: Time(Kernel only) vs. Time(Kernel+data transfer)

● Optimize kernel execution
● overall (kernel+data)/kernel ~3 for RK4 and ~2 Adaptive RK4
● minimize data transfer between host and device 
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Performance: Computational Intensity
● Number of RK4 evaluations and number of variables

● Optimize arithmetic with computational intensity
● do more arithmetic calculations on GPU
● maximize independent parallelism (more for-loops)
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Performance: Realistic Data from cmsExp

● CPU/GPU for the first step transportation for secondary 
particles produced by 10 GeV pions and 100 GeV pions

● Full chain of transportation with a step length = 1cm 

● Need additional arithmetic logistics to improve the gain
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Dependence: Momentum and Step Length

● CPU/GPU for the first step of secondary tracks

● Optimize calculation uniformity
● Keep GPU multiprocessors equally busy
● group tracks with same number of RK4 evaluations as possible

default
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Magnetic Field Access : Texture memory
● Texture memory is cached on chip and designed for 

memory access with spatial locality

● Magnetic field map is a typically 2(3)-dimensional grid

● Texture interpolation twice as fast as the explicit 
interpolation for random access

● No noticeable difference in real data for 3 evaluations of 
RK4 w/wo using the texture - input data are ordered 
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Concurrent Kernel/Stream
● Multiple CUDA streams provide the task parallelism 

(kernel execution and memory copies simultaneously)  

● Using multiple CUDA streams for Runga-Kutta diriver 

● no significant gain observed: balance work load evenly
● Callgrind and IgProf profiling shows that there is only 

40% more work to be gained without any geometry
● add more calculations on device
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Conclusion I
● A core part of Geant4 particle transportation has been 

tested on GPU 

● ratio of processing time for CPU/GPU ~ 20 with 
realistic data using 448 cuda cores 

● Identified key factors to maximize the GPU’s ALU 
capacities  

● Lessens learned

● increase computational intensity on GPU
● look for other transportation algorithms suitable for 

uniformity of calculations
● organize input data for optimal efficiencies of kernel 

executions and data transfers
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Conclusion II: Outlooks
● Adding geometry on device 

● a simple detector (something like CMS crystals)
● generalize transportation including photons and 

intersection with geometry
● Develop device codes for EM physics

● multiple stepping on device to increase computations
● generalize transportation including post step actions 

and pipelines for handling hits and secondaries
● Optimize GPU resources

● more tests for multiple CUDA streams (concurrent 
kernel execution and copying data up/down to GPU)
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Back-up Slides
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Performance: CPU/GPU
● RK4: Kernel+Data Transfer vs. Kernel Only

● Optimize Kernel Execution
● Overall (Kernel+data)/Kernel = 3 for RK4
● Minimize data transfer between host and device
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Performance: Computational Density

● Number of RK  evaluations: 1-RK4 vs. 3-RK4

(Left) one RK4 evaluation  (Right) three-RK4 evaluations
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Performance: Computational 
● Number of variables in equation of motion: 6 variables 

(default) vs. 12 (extended) for adaptive RK4.

● (Left) 6 variables (x,p)         (Right) 12 variables (x,p,t,s)
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Performance: Simulation Data with cmsExp
● CPU/GPU for the first step transportation for secondary 

particles produced by 10 GeV pions and 100 GeV pions

● Full chain of transportation with a step length = 1cm 
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