

# PLANS FOR THE UPGRADE OF THE LHC INJECTORS

R. Garoby for the Injectors' Task Forces and Working Groups 23/06/2010



This project has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under the Grant Agreement nº212114





- Introduction
- Scenario 1: New injectors + SPS upgrade
- Scenario 2: Linac4 + consolidation & upgrade of existing injectors
- Status and planning



## Introduction



## Motivation

http://cern.ch/SLHC-PP

23/06/2010

1. Reliability 1

The present accelerators are getting old (PS is 50 years old...) and they operate far beyond their initial design parameters

- $\Rightarrow$  Need for replacement or consolidation
- & upgrade of the injectors  $L \propto \frac{1}{\beta^*} \frac{N_b}{\varepsilon_{X,Y}} \cdot N_b \cdot k_b$ 2. Performance  $\uparrow$  $N_{h}$  : number of protons/bu nch Luminosity depends directly upon beam  $\varepsilon_{X,Y}$ : normalized transvers e emittances brightness  $N/\varepsilon^*$  $k_{\rm b}$  : number of bunches per ring  $\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{XY}} \cdot \frac{R}{\beta \gamma^2}$ Brightness is limited by space charge at low energy in the injectors  $N_{h}$  : number of protons/bu nch  $\varepsilon_{X,Y}$ : normalized transvers e emittances Need to increase the injection energy R: mean radius of the accelerato r in the synchrotrons  $\beta\gamma$  : classical relativist ic parameters



# Scenario 1: New LHC injectors



## Design goals

http://cern.ch/SLHC-PP

### • For LHC operation

- Higher beam brightness within nominal transverse emittances
- Flexibility for generating various bunch spacings and bunch patterns
- Reduction of SPS injection plateau and LHC filling time

### General design goals

- High reliability and availability
- Simplification of operation schemes for complete complex
- Low beam losses in operation for complete complex
- Potential for future upgrades of the accelerator complex



## **Specifications**

http://cern.ch/SLHC-PP

### **Brightness (N/\varepsilon\_n) for LHC beams**

- Design goal: Twice higher brightness than "ultimate" 25ns beam with 20% intensity reserve for transfer losses
  - $\Rightarrow$  4.0×10<sup>11</sup>ppb = 2 × 1.7×10<sup>11</sup> × 1.2 in transverse emittances of 3µm

#### • Injection energy into the lowest energy synchrotron (PS2)

- Determined by the beam brightness of the LHC beam
- Limit of incoherent space charge tune spread at injection to below 0.2
  - $\Rightarrow$  4 GeV injection energy

#### • Extraction energy

- Injection into SPS well above transition energy to reduce space charge effects and TMCI
- Higher energy gives smaller transverse emittances and beam sizes and therefore reduced injection losses
- Potential for long-term SPS replacement with higher energy
  - $\Rightarrow$  ~50 GeV extraction energy



## Description

http://cern.ch/SLHC-PP





| LP-SPL:                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Low Power-Superconducting                                                            |  |  |  |  |  |  |  |  |  |  |  |
| Proton Linac (4 GeV)                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| PS2:                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| High Energy PS (~ 5 to 50 GeV                                                        |  |  |  |  |  |  |  |  |  |  |  |
| – 0.3 Hz)                                                                            |  |  |  |  |  |  |  |  |  |  |  |
| sLHC:                                                                                |  |  |  |  |  |  |  |  |  |  |  |
| "Super-luminosity" LHC (up to<br>10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup> ) |  |  |  |  |  |  |  |  |  |  |  |



## **Site Layout**





## Linac4

http://cern.ch/SLHC-PP



23/06/2010



## Low Power SPL



SPS upgrade

Scenario 1: New injectors +





### Lattice with imaginary $\gamma_{tr}$

- No transition crossing
  - No beam losses at transition
  - Simplification for operation by avoiding transition jump scheme
- More complicated lattice design and more magnet types/families than in e.g. regular FODO lattices

### Lattice structure

- Injection/extraction requirements limit tuning flexibility of long straight sections
- Arcs have to provide not only imaginary gamma transition but also tuning flexibility
  - Regular arc modules
  - Dispersion suppressor modules to match to straight sections
  - Long straight sections with zero-dispersion

### Longitudinal beam dynamics and RF

- No gymnastics (beam time structure established at injection)
- Tunable RF system (~20 to 40 MHz)



## **PS2 parameters**

| Reason                                                   | Physical parameter                                                                           | Value                                         |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------|
| Space charge PS2                                         | Injection energy (kinetic)                                                                   | 4 GeV                                         |
| SPS improvement                                          | Ejection energy (kinetic)                                                                    | 50 GeV                                        |
| LHC                                                      | Transverse normalized 1 sigma emittances at ejection for LHC                                 | $3 \pi$ mm.mrad                               |
| LHC                                                      | Longitudinal emittance/bunch with 25 ns<br>bunch spacing at ejection                         | 0.35 eVs                                      |
| 2.2 × ultimate brightness for<br>LHC (includes 10% loss) | Nb of protons / bunch with 25 ns bunch<br>spacing at ejection for LHC (total 168<br>bunches) | 4×10 <sup>11</sup><br>(6.7×10 <sup>13</sup> ) |
| Flux for SPS / PS2 fixed<br>target physics               | Nb of protons / bunch with 25 ns bunch spacing (total)                                       | 6×10 <sup>11</sup><br>(~1×10 <sup>14</sup> )  |
| Possible bunch spacings in LHC                           | Size (ratio PS2/SPS)                                                                         | 15/77                                         |
| (25, 50 & 75 ns)                                         | Circumference                                                                                | 1346.4 m                                      |
|                                                          | $h_{RF}$ for 25 ns (resp. 50 or 75 ns) bunch spacing                                         | 180 (resp. 90 or 60)                          |
| Flux for SPS / PS2 fixed target +                        | Cycling period to 50 GeV (case of no injection flat porch)                                   | 2.4 s                                         |



## LHC beams from PS2 (i)

http://cern.ch/SLHC-PP

#### • Nominal bunch train at PS2 extraction

- h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.
- 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)
  - Achieved by direct painting into PS2 40 MHz buckets using SPL chopping.
  - No sophisticated RF gymnastics required.

#### Beam parameters

- Extraction energy: 50 GeV
- Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)
- Bunch length rms: 1 ns (identical to PS)
- Transverse emittances norm. rms: 3 μm (identical to PS)
- Any other bunch train pattern down to 25 ns spacing
  - Straightforward with SPL 40 MHz chopping and 40 MHz system
    - No need for sophisticated RF gymnastics
    - Same brightness per bunch



## LHC beam from PS2 (ii)

- Example 25 ns beam from LP-SPL PS2:
  - PS2 will provide "twice ultimate" LHC bunches with 25 ns spacing
  - Bunch train for SPS twice as long as from PS
  - Only 2 injections (instead of 4) from PS to fill SPS for LHC
  - PS2 cycle length 2.4 s instead of 3.6 s for PS
    - Reduces SPS LHC cycle length by **8.4 of 21.6 s** (3x3.6 1x2.4)
- Reduced LHC filling time





## **Preliminary planning**

http://cern.ch/SLHC-PP

23/06/2010

|    |                                                            | 2                 | 009          |   | 201      | LO  |     | 20       | 011 | 11 2012 |   | 2013 |              |        |     | 2014 |      |        | 2015 |        |   |              | 2016         |     | 5   | 2017 |        |   | 20 |   | В   | 201        |     | 9   |   | 20  | 020 | 1 |   |   |   |
|----|------------------------------------------------------------|-------------------|--------------|---|----------|-----|-----|----------|-----|---------|---|------|--------------|--------|-----|------|------|--------|------|--------|---|--------------|--------------|-----|-----|------|--------|---|----|---|-----|------------|-----|-----|---|-----|-----|---|---|---|---|
|    |                                                            | 1 2               | 2 3 4        | 1 | 2        | 3 4 | 4 1 | 2        | 3   | 4       | 1 | 2    | 3 4          | 1      | 2   | 3 4  | 4 1  | 1 2    | 2 3  | 4      | 1 | 2            | 3            | 4 : | 1 2 | 2 3  | 4      | 1 | 2  | 3 | 4 1 | 1          | 2 3 | 3 4 | 1 | 2 3 | 3 4 | 1 | 2 | 3 |   |
| 1  | All SPL and PS2 Parameters defined                         | •                 | ★            |   |          |     |     |          |     |         |   |      |              |        |     |      |      |        |      |        |   |              |              |     |     |      |        |   |    |   | 1   |            |     |     |   |     |     |   |   |   |   |
| 2  | Integration layout (sufficient staff number)               |                   |              |   |          |     |     |          |     |         |   |      |              |        |     |      |      |        |      |        |   |              |              |     |     |      | /      | 1 |    |   |     | V          |     |     |   |     |     |   |   |   |   |
| 3  | Definition of main parameters for all tunnels and building | s                 |              | 7 | <b>\</b> |     |     |          |     |         |   |      |              |        |     |      |      |        |      |        |   |              | /            | 1   | /   |      |        |   |    |   |     | 2          | 2   |     |   |     |     |   |   |   |   |
| 4  | Call for tender for CE Consultancy                         |                   |              |   | -        |     |     |          |     |         |   |      |              |        |     |      |      |        |      | 5      |   |              |              |     |     | Ŋ    |        |   | 7  |   | V   |            |     |     |   |     |     |   |   |   |   |
| 5  | CE preliminary study and geological investigations         |                   |              |   |          |     |     |          |     | •       |   |      |              |        | 5   | /    | 1    |        |      |        |   |              | K            | 1   |     |      |        |   |    |   |     |            |     |     |   |     |     |   |   |   |   |
| 6  | Design CE totaly frozen                                    |                   |              |   |          |     |     |          | 7   | ~       |   |      |              |        |     |      |      |        |      |        |   |              | \            |     |     | /    | Ì      |   |    |   |     |            |     |     |   |     |     |   |   |   |   |
| 7  | Environmental impact study                                 |                   |              |   |          |     | ÷   | <b>.</b> | цщ  |         |   |      |              |        | /   |      | ١    | N      |      |        |   |              | (            |     |     |      |        |   |    |   | V   |            |     |     |   |     |     |   |   |   |   |
| 8  | Preparation of tender drawings and cost estimation         |                   |              |   |          |     |     |          |     |         |   |      |              |        |     |      |      | V      |      |        |   |              | $\backslash$ |     | 1   | P    | $\sim$ |   |    |   |     |            |     | ľ   |   |     |     |   |   |   |   |
| 9  | Cost Estimate / Project Proposal                           | $\langle \rangle$ |              |   |          |     |     | V        |     |         | 1 | ٢    | $\checkmark$ | F      | Pro | jec  | ts a | apı    | pro  | ve     | d | $\backslash$ | \            |     |     | V    |        |   |    |   |     | N          |     | )   |   |     |     |   |   |   | _ |
| 10 | Call for tender for CE works                               | V                 |              |   |          |     |     |          | V   |         | V | /    |              |        |     |      |      |        | L    | $\geq$ |   |              | V            |     |     |      | V      |   |    |   |     |            | V   | /   |   |     |     |   |   |   |   |
| 11 | Civil Engineering works - underground                      |                   |              | V |          | Z   |     |          |     |         |   |      |              | 4      |     |      |      |        |      |        |   | ~            |              |     |     |      |        |   |    |   |     |            |     |     |   |     |     |   |   |   |   |
| 12 | Civil Engineering works - surface                          |                   | $\backslash$ |   |          | )   | V   |          |     |         |   | 7    | $\sum$       |        |     |      |      |        | -    | N      |   |              |              | _   | 7   |      |        |   |    |   |     |            |     |     |   |     |     |   |   |   |   |
| 13 | CV, EL, Handling & lifting, access syste, safety systems   |                   |              |   |          |     |     |          | )   |         |   |      |              |        |     |      |      |        |      | 5      |   |              |              |     |     |      | -      |   |    |   |     |            |     |     |   |     |     |   |   |   |   |
| 14 | Delivery of the infrastructure and equipment               |                   |              |   |          |     |     |          |     |         | ) |      |              |        |     | V    |      | $\geq$ |      |        |   |              |              |     |     |      |        |   |    |   | •   | $\bigstar$ |     |     |   |     |     |   |   |   | _ |
| 15 | SPL and PS2 machine installation                           |                   |              |   |          |     | V   |          |     |         |   |      |              | $\geq$ |     |      |      |        |      |        |   |              |              |     |     |      |        |   |    |   |     |            |     |     |   | -   |     |   |   |   |   |
| 16 | SPL and PS2 commisionning                                  |                   |              |   |          |     |     |          |     | /       |   |      |              |        |     |      |      |        |      |        |   |              |              |     |     |      |        |   |    |   |     |            |     |     |   |     |     |   |   |   |   |
| 15 | Installation TL PS2 - TT10 and SPS 50 MeV inejction system | n                 |              |   |          | V   | /   |          |     |         |   |      |              |        |     |      |      |        |      |        |   |              |              |     |     |      |        |   |    |   |     |            |     |     |   |     |     |   |   |   | _ |
| 16 | SPS and TT10 commisssioning with PS2                       |                   |              |   |          |     |     |          |     |         |   |      |              |        |     |      |      |        |      |        |   |              |              |     |     |      |        |   |    |   |     |            |     |     |   |     |     |   | - |   |   |
| 17 | Start operation for physics                                |                   |              |   |          |     |     |          |     |         |   |      |              |        |     |      |      |        |      |        |   |              |              |     |     |      |        |   |    |   |     |            |     |     |   |     |     |   | 7 |   |   |



## **SPS upgrade needs**

| SPS achievement<br>wrt LHC needs |                      |          | SPS rec<br>450 G | ord at<br>eV/c | LHC request<br>25 ns |          |  |  |  |  |  |
|----------------------------------|----------------------|----------|------------------|----------------|----------------------|----------|--|--|--|--|--|
|                                  | Parameters           |          | 25 ns            | FT             | nominal              | ultimate |  |  |  |  |  |
|                                  | bunch intensity/10   | 11       | 1.2              | 0.13           | 1.2                  | 1.8      |  |  |  |  |  |
|                                  | number of bunches    | s in SPS | 288              | 4200           | 288                  | 288      |  |  |  |  |  |
|                                  | total intensity/1013 |          | 3.5              | 5.3            | 3.5                  | 5.2      |  |  |  |  |  |
|                                  | long. emittance      | [eVs]    | 0.7              | 0.8            | <1.0                 | <1.0     |  |  |  |  |  |
|                                  | norm. H/V emitt.     | [µm]     | 3.6              | 8/5            | 3.5                  | 3.5      |  |  |  |  |  |

- ⇒ Upgrade required for the ultimate LHC beam characteristics [1.7x10<sup>11</sup>/bunch, 25 ns spacing, 288 bunches]
- ⇒ Further upgrade necessary to match PS2 max beam characteristics [4x10<sup>11</sup>/bunch, 25 ns spacing, 336 bunches, total 1.3x10<sup>14</sup>]



## **Known SPS limitations**

http://cern.ch/SLHC-PP

#### • Single bunch effects:

- TMCI (transverse mode coupling instability)
- space charge

#### • Multi-bunch effects:

- beam loss
- e-cloud
- longitudinal coupled bunch instabilities
- beam loading in the 200 MHz and 800 MHz RF systems
- heating of machine elements (MKE, MKDV kickers, ...)
- vacuum (beam dump and MKDV outgassing), septum sparking
  (ZS was a main limitation in 2008 and 2009 → 3 nominal LHC batches)



### **SPS** summary

- Main SPS limitations for ultimate intensity have been identified. Measures to overcome them are under study (limited by resources)
- The presence of other limitations is suspected. Beam studies with higher than nominal intensity are needed to search for them.
- e-cloud is a well-identified source of trouble. Means of mitigation are under study.
  a-C coating of vacuum chamber is the best candidate for implementation
- Upgrading the SPS RF system upgrade is mandatory for ultimate intensities.
- e-cloud mitigation, impedance reduction and RF upgrade would help for nominal and ultimate LHC beam operation and can be implemented earlier
- In the upgrade plan with PS2, the SPS will have a higher injection energy which helps to overcome some high intensity limitations (single bunch, injection losses) and avoid transition crossing for CNGS/FT beam. Needs many studies and hardware modifications.



# Scenario 2: Linac4 + consolidation & upgrade of existing injectors



## **Recent data**

http://cern.ch/SLHC-PP

### • LHC: – De

- Delayed start-up
- Slower progress of performance than initially foreseen
- Need for more work & resources to reach nominal performance
- More worries on capability to operate beyond ultimate beam characteristics

### **New injectors:**

Realistic planning: availability in 2020-2022

### $\Rightarrow$ need to invest for consolidating the existing accelerators

Uncertain SPS potential

### $\Rightarrow$ Interest for investigating the possibility to upgrade PSB and PS



## Main assumptions

http://cern.ch/SLHC-PP

- Linac4 is available.
- Maximum number of protons/PSB ring with Linac4 (limited by space charge effect at PSB injection): 3.6×10<sup>12</sup>
- Objective: maximize the bunch intensity of the LHC beam with 25 ns spacing.
- Criterion:
  - Control the space charge tune shift  $\Delta Q$

$$\propto -\frac{N_b}{\beta \gamma^2 \varepsilon_n}$$

- Reference parameters
  - ε<sub>n</sub> = 2.5 μm
  - Bunch length = 180 ns

Nominal parameters used for the PSB upgrade from 1 GeV to 1.4 GeV

- Constraint  $\left| \Delta Q \right| \le 0.3$ 

upgrade & consolidation Linac4 + Scenario 2:



## Space charge tune shift in the PS





## **Potential performance**

http://cern.ch/SLHC-PP

### • Ultimate 25 ns LHC beam:

- 2.4E12 protons/bunch within 2.5  $\pi$  mm mrad \*
- 6 bunches in two injections into the PS
- translates into 1.7x10<sup>11</sup> protons/bunch in the LHC ("ultimate"); includes 15% losses

Out of range today: possible with Linac4.

### **Beyond Ultimate**

- Theoretical upper limit of 3.24x10<sup>12</sup> protons/bunch injected into PS (cf. M.Giovannozzi)
- would translate into 2.7x10<sup>11</sup> protons/bunch in the LHC; extremely optimistic (no losses).
  Need Linac4 and PSB energy upgrade.

\* 3.5  $\pi$  mm mrad at SPS extraction, includes budget for emittance blow up (not used)



## Beam dynamics (beyond space-charge)

### • Subjects:

- PSB at 2 GeV: nothing critical
- PS: need to investigate:
  - longitudinal coupled-bunch instabilities during ramp and at flat top
  - electron cloud and transverse instabilities at flat top
  - resistive wall head-tail instabilities at flat bottom
  - TMCI at transition crossing

### Actions:

- Need for machine studies (already started)
- Cures/mitigation measures: suggestions exist for all subjects



## **Overview (PSB and PS)**

http://cern.ch/SLHC-PP

### **Preliminary analysis**

|     |                                    |        | Feasibility | Impact |
|-----|------------------------------------|--------|-------------|--------|
| 1.  | Beam Dynamics                      | BE/ABP | YES         |        |
| 2.  | Magnets, Magnetic Measurements     | TE/MCS | YES         | ++     |
| 3.  | RF System                          | BE/RF  | YES         | +      |
| 4.  | Beam Intercepting Devices          | EN/STI | YES         | +      |
| 5.  | Power Converters                   | TE/EPC | YES         | +++    |
| 6.  | Vacuum System                      | TE/VSC | YES         | +      |
| 7.  | Instrumentation                    | BE/BI  | YES         |        |
| 8.  | Commissioning                      | BE/OP  | YES         |        |
| 9.  | Extraction, Transfer, PS Injection | TE/ABT | YES         | +++    |
| 10. | Controls                           | BE/CO  | YES         |        |
| 11. | Electrical Systems                 | EN/EL  | YES         | ++     |
| 12. | Cooling and Ventilation            | EN/CV  | YES         | ++     |
| 13. | RP and Safety                      | DGS/RP | YES         |        |
| 14. | Transport and Handling             | EN/HE  | YES         |        |
| 15. | Survey                             | BE/ABP | YES         |        |
|     |                                    |        |             |        |





- Showstopper identification completed
- → no showstoppers, but a number of significant modifications identified
- Costing and scheduling (work in progress):

Implementing the energy upgrade before Linac4 (2015) is

- a) schedule-/resource-wise unrealistic
- b) more costly as consolidation will not be in place by then

### Comparison of cases with Linac2 and with Linac4

→ firm recommendation to implement the energy upgrade with Linac4

### Interest of pulsing at 2 GeV only for LHC

- → no cost advantage: recommendation to operate at 2 GeV for all beams sent to the PS
- → minor saving possible in case ISOLDE 1 GeV option would be suppressed



# **Status and planning**



## **Linac4 Civil Engineering**





project duration: ~ 7 years



## **Other accelerators**

- Scenario 1 was the baseline until recently:
  - A lot of work has been accomplished / collaborations established (see web-sites)

### However, considering the present context (slide 21), and pending CERN Council decision on the MTP

### Scenario 2 is favored:

- no construction of LP-SPL and PS2.
- termination of studies to allow for the LP-SPL and PS2 to remain as possible fall-back solutions.
- continuation of SPL R & D for high beam power in view of potential use in a neutrino facility.
- increase of the PSB to PS transfer energy.
- consolidation and upgrade of PSB, PS and SPS.





# **Reference slides**



### **Complication in present operation:** e.g. 25 ns bunch train production in PS complex

http://cern.ch/SLHC-PP

