IN 2 P 3

Electronics in particle physics

EDIT school CERN 2011

C. de LA TAILLE IN2P3 Taille@lal.in2p3.fr

IN2P3

CENTRE NATIONAL DE LA RECHERCHE

Orsay Micro Electronic Group Associated

Electronics in experiments

- A lot of electronics in the experiments...
 - The performance of electronics often impacts on the detectors
 - Analog electronics (V,A,A...) / Digital electronics (bits)

1 feb 2011

<u> Mega</u>

Electronics enabling new detectors : trackers

1 feb 2011

C. de La Taille

Importance of electronics : calorimeters

- Large dynamic range (10⁴-10⁵)
- High Precision ~1%
 - Importance of low noise, uniformity, linearity...
 - Importance of calibration

1 feb 2011

A large variety of detectors...

1 feb 2011

<u> Mega</u>

Detector(s)

mega

- A large variety
- A similar modelization

1 feb 2011

C. de La Taille

Detector modelization

- Detector = capacitance Cd
 - Pixels : 0.1-10 pF
 - PMs: 3-30pF
 - Ionization chambers 10-1000 pF
 - Sometimes effect of transmission line
- Signal : current source
 - Pixels : ~100e-/µm
 - PMs : 1 photoelectron -> 10⁵-10⁷ e-
 - Modelized as an impulse (Dirac) : i(t)
 (t)
- Missing :
 - High Voltage bias
 - Connections, grounding
 - Neighbours
 - Calibration...

200mV Ω M 10.0ns A Ext J 100mV

🖬 🖸 🤉 🖬 🖬

Electronics in particle physics EDIT CERN school

Tek Stop

25 Jui

Reading the signal

- Signal
 - Signal = current source
 - Detector = capacitance C_d
 - Quantity to measure
 - Charge => integrator needed
 - Time => discriminator + TDC
- Integrating on Cd
 - Simple : $V = Q/C_d$
 - « Gain » : $1/C_d$: 1 pF -> 1 mV/fC
 - Need a follower to buffer the voltage
 => parasitic capacitance
 - Gain loss, possible non-linearities
 - crosstalk
 - Need to empty Cd...

1 feb 2011

Monolithic active pixels

- Collect charge by diffusion
- Read ~100 e- on Cd~10fF = few mV

© R Turchetta RAL

Ideal charge preamplifier

- Shunt-shunt feedback
- transimpedance : v_{out}/i_{in}

- Vin-=0 =>
$$V_{out}(\omega)/i_{in}(\omega)$$
 = - Z_f = - $1/j\omega C_f$

Integrator : $v_{out}(t) = -1/C_f \int i_{in}(t)dt$

« Gain » : $1/C_f$: 0.1 pF -> 10 mV/fC

C_f determined by maximum signal

t (ns)

neaa

Non-ideal charge preamplifier Finite opamp gain OPEN-LOOP FREQUENCY RESPONSE $- V_{out}(\omega)/i_{in}(\omega) = - Z_f / (1 + C_d / G_0 C_f)$ – Small signal loss in C_d/G_0C_f << 1 80 Open-Loop Voltage Gain (dB) (ballistic deficit) 60 40 Phase Finite opamp bandwidth Gain 20 First order open-loop gain Phase $- G(\omega) = G_0/(1 + j \omega/\omega_0)$ Margin 60° -20 • G₀ : low frequency gain • G_0 : 10w in equal 1 • $G_0\omega_0$: gain bandwidth product \ge 10M 100M 1k 10k 100k 1M 1G Frequency (Hz) 0.12 Cf=0.10pF 0=10fC f.=160Mhz 0.1 Preamp risetime 0.08 Due to gain variation with ω 0.06 Time constant : т *(tau)* 0.04 $T = C_d/G_0\omega_0C_f$ Rise-time : $t_{10-90\%} = 2.2 \text{ T}$ 0.02

- Rise-time optimised with w_{C or} C_f

0

25

50

75

100

Impulse response with non-ideal preamp

125

150

175 200

Phase

-45

-90

-135

-180

Charge preamp seen from the input

Input impedance with ideal opamp

- Zin = Zf / G+1
- Zin->0 for ideal opmap
- « Virtual ground » : Vin = 0
- Minimizes sensitivity to detector impedance
- Minimizes crostalk
- Input impedance with real opamp
 - $\operatorname{Zin} = 1/j\omega \operatorname{G}_0 \operatorname{C}_f + 1/\operatorname{G}_0 \omega_0 \operatorname{C}_f$
 - Resistive term : Rin = 1/ $G_0\omega_0 C_f$
 - Exemple : $w_c = 10^{10} \text{ rad/s } C_f = 1 \text{ pF}$ => Rin = 100 Ω
 - Determines the input time constant : $t = R_{eq}C_{d}$
 - Good stability= (...!)
 - Equivalent circuit :

mega

Crosstalk

- Capacitive coupling between neighbours
 - Crosstalk signal is differentiated and with same polarity
 - Small contribution at signal peak
 - Proportionnal to Cx/Cd and preamp input impedance
 - Slowed derivative if RinCd ~ tp => non-zero at peak
- Inductive coupling
 - Inductive common ground return
 - Connectors : mutual inductance

1 feb 2011

C. de La Taille

Electronics noise

- Definition of Noise
 - Random fluctuation superposed to interesting signal
 - Statistical treatment
- Three types of noise
 - Fundamental noise (Thermal noise, shot noise)
 - Excess noise (1/f ...)
 - Parasitics -> EMC/EMI (pickup noise, ground loops...)

<u> Mega</u>

1 feb 2011

C. de La Taille

Electronics noise

- Modelization
 - Noise generators : e_n, i_n,
 - Noise spectral density of $e_n \& i_n S_v(f) \& S_i(f)$
 - $Sv(f) = | \mathcal{F}(e_n) |^2 (V^2/Hz)$
- *Rms* noise Vn 10⁻⁹ 107 10⁵ 106 10⁴ 103 $- V_n^2 = \int e_n^2(t) dt = \int Sv(f) df$ f (Hz) White noise (e_n) : $v_n = e_n \sqrt{\frac{1}{2}\pi} f_{-3dB}$ 1400 0.01 Entries \$4465 () 0.01 0.008 0.006 0.004 0.002 0.3033E-D6 1200 0.1450E-02 1000 800 rms 0 600 -0.002 400 -0.004200 -0.006-0.0080 0.002 0.004 0.008 -0.004 - 0.0020 -0.01200 400 600 800 1000 Rms noise vn time (ns)

1 feb 2011

Electronics in particle physics EDIT CERN school

10⁻⁷

10-8

12 (V/~Hz)

mega

108

Noise spectral density

Electronics in particle physics EDIT CERN school C. de La Taille

Calculating electronics noise

- Fundamental noise
 - Thermal noise (resistors) : Sv(f) = 4kTR
 - Shot noise (junctions) : Si(f) = 2qI
- Noise referred to the input
 - All noise generators can be referred to the input as 2 noise generators :
 - A voltage one e_n in series : series noise
 - A current one i_n in parallel : parallel noise
 - Two generators : no more, no less...

To take into account the Source impedance

Golden rule

1 feb 2011

Always calculate the signal before the noise what counts is the signal to noise ratio

Noise generators referred to the input

R

 $S_v(f) = 4kTR$

Si(f)

Noise in charge pre-amplifiers

- 2 noise generators at the input
 - Parallel noise : (i_n^2) (leakage currents)
 - Series noise : (e_n^2) (preamp)
- Output noise spectral density :
 - $Sv(\omega) = (i_n^2 + e_n^2/|Z_d|^2) / \omega^2 C_f^2$ $= i_n^2 / \omega^2 C_f^2 + e_n^2 C_d^2 / C_f^2$
 - Parallel noise in $1/\omega^2$
 - Series noise is flat, with a « noise gain » of C_d/C_f
- *rms* noise V_n
 - $V_n^2 = \int Sv(\omega) d\omega/2\pi \rightarrow \infty$ (!)
 - Benefit of shaping.

1 feb 2011

Electronics in particle physics EDIT CERN school

10

(ZHZ)

10

Equivalent Noise Charge (ENC) after CRRCⁿ

- Noise reduction by optimising useful bandwidth
 - Low-pass filters (**RC**ⁿ) to cutoff high frequency noise
 - High-pass filter (CR) to cut-off parallel noise
 - -> pass-band filter CRRCⁿ
- Equivalent Noise Charge : ENC
 - Noise referred to the input in electrons
 - ENC = Ia(n) $e_n C_t / \sqrt{T}$ \oplus Ib(n) $i_n * \sqrt{T}$
 - -7 Series noise in $1/\sqrt{T}$
 - Paralle noise in 🗸
 - 1/f noise independant of T
 - Optimum shaping time $\tau_{opt} = \tau_c/\sqrt{2n-1}$

()mega

Equivalent Noise Charge (ENC) after CRRCⁿ Omega

- Peaking time tp (5-100%)
 - ENC(tp) independent of n
 - Also includes preamp risetime
- Complex shapers are obsolete :
 - Power of digital filtering
 - Analog filter = CRRC ou CRRC²
 - antialiasing

C. de La Taille

Equivalent Noise Charge (ENC) after CRRCⁿ Omena

• A useful formula : ENC (e- rms) after a CRRC² shaper :

ENC = 174 $e_n C_{tot} / \int t_p (\delta) \oplus 166 i_n \int t_p (\delta)$

- e_n in nV/ \sqrt{Hz} , i_n in pA/ \sqrt{Hz} are the preamp noise spectral densities
- C_{tot} (in pF) is dominated by the detector (C_d) + input preamp capacitance (C_{PA})
- t_p (in ns) is the shaper peaking time (5-100%)

1 feb 2011

C. de La Taille

1 feb 2011

C. de La Taille

Example of ENC measurement

- SKIROC ASIC (ILC readout) : 0.35µm SiGe
 - Series : en = 1.4 nV/ \sqrt{Hz} , C_{PA} = 7 pF
 - 1/f noise : 12 e-/pF
 - Parallel : in = 40 fA/ \sqrt{Hz}

()mega

MOS input transistor sizing

- Capacitive matching : strong inversion
 - $\rm g_m$ proportionnal to W/L $\rm \sqrt{I_D}$
 - C_{GS} proportionnal to W*L
 - ENC propotionnal to (Cdet+C_{GS})/ \sqrt{gm}
 - Optimum W/L : $C_{GS} = 1/3$ Cdet
 - Large transistors are easily in moderate or weak inversion at small current
 - Optimum size in weak inversion
 - g_m proportionnal to I_D (indep of W,L)
 - ENC minimal for C_{GS} minimal, provided the transistor remains in weak inversion

 I_D/W [A/m]

Current preamplifiers :

- Transimpedance configuration
 - $V_{out}(\omega)/i_{in}(\omega)$ = $R_f/(1+Z_f/GZ_d)$
 - Gain = R_f
 - High counting rate
 - Typically optical link receivers
- Easily oscillatory
 - Unstable with capacitive detector
 - Inductive input impedance $L_{eq} = R_f / \omega_C$

- Resonance at :
$$f_{res} = 1/2\pi \sqrt{L_{eq}C_{c}}$$

- Quality factor : Q = R / $\sqrt{L_{eq}/C_d}$
 - Q > 1/2 -> ringing
- Damping with capacitance C_f
 - $C_f = 2 \sqrt{(C_d/R_f G_0 \omega_0)}$
 - Easier with fast amplifiers

C. de La Taille

C. de La Taille Electronics in particle physics EDIT CERN school

Charge vs Current preamps

- Charge preamps
 - Best noise performance
 - Best with short signals
 - Best with small capacitance
- Current preamps
 - Best for long signals
 - Best for high counting rate
 - Significant parallel noise
 - Charge preamps are <u>not slow</u>, they are <u>long</u>
- Current preamps are <u>not faster</u> they are <u>shorter</u> (but easily unstable)

mega

Charge preamp design

- From the schematic of principle
 - Using of a fast opamp (OP620)
 - Removing unnecessary components...
 - Similar to the traditionnal schematic «Radeka 68 »

1 feb 2011

C. de La Taille

Electronics in particle physics EDIT CERN school

()mega

Cf

Example : designing a charge preamp (2) () mean

- Simplified schematic
- Optimising components
 - What transistors (PMOS, NPN ?)
 - What bias current ?
 - What transistor size ?
 - What is the noise contributions of each component, how to minimize it ?
 - What parameters determine the stability ?
 - Waht is the saturation behaviour ?
 - How vary signal and noise with input capacitance ?
 - How to maximise the output voltage swing ?
 - What the sensitivity to power supplies, temperature...

Q2 : CB

 $I_{C2} = 100 \mu A$

Simplified schematic of charge preamp

Q1 : CE

 $I_{c1} = 500 \mu A$

I13

Q3 : CC

 $I_{C3} = 100 \mu A$

Example : designing a charge preamp (3) () meaa

Small signal equivalent model

1 feb 2011

- Transistors are reaplaced by hybrid п model
- Allows to calculate open loop gain

Example : designing a charge preamp (4) mega

Example : designing a charge preamp (5) ()mega

- Complete simulation
 - Checking hand calculations against 2nd order effects
 - Testing extreme process parameters (« corner simulations »)
 - Testing robustness (to power supplies, temperature...)

Example : designing a charge preamp (6) () meaa

Layout

- Each component is drawn
- They are interconnected by metal layers
- Checks
 - DRC : checking drawing rules (isolation, minimal dimensions...)
 - ERC : extracting the corresponding electrical schematic
 - LVS (layout vs schematic) : comparing extracted schematic and original design
 - Simulating extracted schematic with parasitic elements
- Generating GDS2 file
 - Fabrication masks : « reticule »

1 feb 2011

Electromagnetic compatibility (EMC-EMI)

- Coexistence analog-digital
 - Capacitive, inductive and common-impedance couplings
 - A full lecture !
 - A good summary : there is no such thing as « ground », pay attention to current return

1 feb 2011

Electronics in particle physics EDIT CERN school

<u>()mega</u>

1 feb 2011

C. de La Taille

Electronics in particle physics EDIT CERN school

<u> Mega</u>

Operationnal amplifiers : a large zoo

- Voltage feedback operationnal amplifier (VFOA)
- Voltage amplifiers, RF amplifiers (VA,LNA)
- Current feedback operationnal amplifiers (CFOA)
- Current conveyors (CCI, CCII +/-)
- Current (pre)amplifiers (ISA,PAI)
- Charge (pre)amplifiers (CPA,CSA,PAC)
- Transconductance amplifiers (OTA)

C. de La Taille

Transimpedance amplifiers (TZA,OTZ)

Mixing up open loop (OL) and closed loop (CL) configurations

1 feb 2011

Iout

mega

G=1

Zp(f)*ie

Vn

Vn

Open loop gain variation with frequency

- Define exactly what is « gain » vout/vin, vout/iin...
- « Gain » varies with frequency : $G(j\omega) = G_0/(1 + j \omega/\omega_0)$
 - G₀ low frequency gain
 - ω_0 dominant pole
 - $\omega_c = G_0 \omega_0$ Gain-Bandwidth product (sometimes referred to as unity gain frequency)

mega

Feedback : an essential tool

- Improves gain performance
 - Less sensitivity to open loop gain (a)
 - Better linearity
- Essential in low power design
- Potentially unstable
- Feedback constant : β = E/ Xout
- Open loop gain : a = Xout/E
- Closed loop gain : Xout/Xin -> 1/β

1 feb 2011

C. de La Taille

- Shunt-shunt = transimpedance
 - Small Zin (= Zin(OL)/T) -> current input
 - small Zout (= Zout(OL)/T) -> voltage output
 - De-sensitizes transimpedance = $1/\beta$ = Zf I in
- Series-shunt
 - Large Zin (= Zin(OL)*T) -> voltage input
 - Small Zout (= Zout(OL)/T) -> voltage
 - Optimizes voltage gain (= $1/\beta$)
- Shunt series
 - Small Zin (= Zin(OL)/T) -> current inp
 - Large Zout (= Zout(OL)*T) -> current
 - Current conveyor
- Series-series
 - Large Zin (= Zin(OL)*T) -> voltage input
 - Large Zout (= Zout(OL)*T) -> current output
 - Transconductance
 - Ex : common emitter with emitter degenration

1 feb 2011

mega

Z_F

R2

eedbac

C d

Vp

Voltage Feedback Operationnal Amplifiers

- Breakthrough in the 90's: OP620-621
 - 2 stages : Cascode=CE, Push-pull
 = CC
 - Pd = 250 mW
 - G0 = 1000

<u>()mega</u>

42

40 Gb/s transimpedance amplifier

« Simple architecture » - CE + CC configuration പല SiGe bipolar transi CC outside feedbac « pole splitting »

1 feb 2011

Electronics in particle physics EDIT CERN school

mega

Exercice slides

C. de La Taille

Electronics in particle physics EDIT CERN school

<u> Mega</u>

Ideal charge preamp

1 feb 2011

C. de La Taille

Electronics in particle physics EDIT CERN school

45

Ideal charge preamp

- Simulate impulse response
- Frequency response
- Input impedance
- Ballistic deficit
- Effect of amplifier gain
- Effect of resistive feedback
- Test pulse injection
- Effect of input capacitance
- Parasitic inductance
- Capacitive crosstalk
- Resistive/Inductive ground return

mega

Non ideal charge preamp

mega

1 feb 2011

C. de La Taille

Electronics in particle physics EDIT CERN school

47

C. de La Taille

Electronics in particle physics EDIT CERN school

<u> Mega</u>

The foundations of electronics

- Voltage generators or source
 - Ideal source : constant voltage, independent of current (or load)
 - In reality : <u>non-zero</u> source impedance R_s

Current generators

- Ideal source : constant current, independent of voltage (or load)
- In reality : finite output source impedance R_S

Ohms' law

- Z = R, 1/jωC, jωL
- Note the sign convention

mega

 $\mathbf{R}_{\mathbf{S}} \rightarrow \infty$

Frequency response

1 feb 2011

Time response

Impulse response

• T (tau) = RC = 1 μ s : time constant

-
$$H(t) = \mathcal{F}^{-1} \{ 1/j\omega R/(1+j\omega RC) \}$$

= R [1 - exp(-t/ T)]

- Rise time :
$$t_{10-90\%} = 2.2$$

« eye diagramm »

1 feb 2011