

High gradient performance of RF gun and S-band accelerator structure for dark current reduction

T. Taniuchi

Linear Accelerator Team, Accelerator Group I
Accelerator Division
Japan Synchrotron Radiation Research Institute (JASRI/SPring-8)

International Workshop on Breakdown Science and High Gradient Technology (H_iG_o2012) KEK, Tsukuba, 18-20, Apr. 2012

SPring-8 (Super Photon ring-8 GeV) opened for users in 1997

Injector system

8 GeV Booster synchrotron

1 GeV linac (3 m x 22 structures \rightarrow E_{acc} ~15 MV/m)

High gradient related topics around 1GeV linac

All S-band

Photocathode RF Gun (max. 190 MV/m at cathode)

High power operation since 1999

Dark current reduction of accelerating structure (E_{acc}~27 MV/m)

High power test since 2010

Photocathode RF gun at SPring-8

Brief History

2012

1997	Photcathode RF Gun R&D started.
1999	First beam.
	Field gradient on cathode 127 MV/m with 35 MW Klystron.
2002	175 MV/m with 80 MW Klystron.
	Cartridge cathode RF gun (Gun2) installed.
2003	3m structure installed. (30 MeV)
2004	190 MV/m achieved after chemical etching adopted.

SLED and bunch compressor will be installed.

-> Test bench for femtosecond bunch monitor based on EO-sampling

Gun cavity

Single cell with output RF port

enables short RF pulse operation

stability in high gradient operation

Frequency 2856 [MHz]

Loaded Q value 1414

Coupling 1.02

Filling time 0.31 [2sec]

 $E_{max}/E_{cathode}$ 1.09

E-field in gun cavity (log scaled)

Improvement of high gradient performance

In 2002, we achieved the highest gradient of 171 MV/m (4.0MeV), but it took 2 months for RF conditioning.

To increase the gradient and improve the quantum efficiency of the cathode (Cu), we adopted a cleaning by chemical etching.

Etching solution: H₂SO₄, H₂O₂ each at 2 wt% This was determined from etching rate of OFC, that is <1 μm / a few min. (controllable time by human work)

As a result, 190* MV/m (4.5 MeV) and Q.E. of 1x10⁻⁴ achieved after 23 days conditioning. *the maximum surface gradient: 207 MV/m

Cathode surface viewed from beam exit. Some damage can be observed.

Present status

Operation parameters

Max. E_{cathode} 157 MV/m

RF Pulse width 700 ns

Dark current 60 pC/pulse

(vacuum pressure ~5x10⁻⁷ Pa @RF On)

- Low emittance study (1.4pmmmrad@0.38nC)
- Z-pol laser injection (Gun2)
- Bunch monitor R&D based on EO-sampling

Reduction of dark currents from accelerator structure

SPring-8 operation mode

Single (several) bunch operation requires a bunch impurity of 10⁻¹⁰

few electrons

RF knock out system in the booster synchrotron

Reduction of dark current from linac is preferable

Accelerator structure R&D

Test structure (energy modulator for bunch compressor)

Test structure

Elliptical iris

We expect a dark current reduction of one order of magnitude

Waveguide coupler (single feed)

RF Conditioning (ongoing)

- Max. 27.6 MV/m (max. Klystron output)
- Bump around 16 MV/m

Electrons emitted from upstream side of coupler iris, focused on Faraday cup by waveguide field. It's not transported to downstream because energy is low.

Summary

- RF gun cavity (single cell, low Q) has been operated in high gradient field (nominal 157 MV/m, max. 190 MV/m) more than 10 years at SPring-8.
- A high power test of a 1m-long structure designed to decrease the dark currents emitted from the structure surface, is ongoing. A chemical etching will adopt for this structure. (maybe next year)
- In 2012, upgrades of RF power (SLED) and beam energy (30 to 50 MeV)
 are planned as a test bench of femtosecond bunch monitor for XFEL. 3mlong accelerator structure will also be replaced by a shorter structure
 adopted a waveguide coupler (double feed) and ellipse cross-section of
 iris.