The challenge of adapting HEP physics
software applications to run
on many-core Cpus

CERN, June "10

Vincenzo Innocente

High Performance Computing CERN
for High Energy Physics

June 21,2010 V... -- MultiCore R&D I

MOTIVATIONS

Computing in the years Zero

<

Transistors used to increase raw-power Increase global power

10,000,000

L

1,000,000

100,000

Moore’s

10,000

1,000

100 : /
10 ,_/ /

/ ° P = e = .'- -
=] > ‘/
1 / = Trz nsistors (000) |
2 x e Cl« ck Speed (MHz)
e & Po wer (W)
@« Pe fiIClock (ILP)
o 1 | 1

1970 1975 1980 1985 1990 1995 2000 2005 2010

Go Parallel: many-cores!

— A turning point was reached and a new technology
emerged: multicore
» Keep frequency and consumption low

» Transistors used for multiple cores on a single chip: 2, 4, 6, 8
cores on a single chip

— Multiple hardware-threads on a single core

» simultaneous Multi-Threading (Intel Core i7 2 threads per core
(6 cores), Sun UltraSPARC T2 8 threads per core (8 cores))

— Dedicated architectures:
» GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel MIC)

» CELL
» FPGA (Reconfigurable computing)

Systems

Top 500 1993-2010

500

400

300

200

100

Operating System Share Over Time
1993-2009

06/1993
06/1994 |\

Source http://www.top500.org/

Linux
M AIX
B UNICOS
M HP Unix (HP-UX)
M IRIX
B Solaris
M CMOST
W uxp/V
M Super-UX
W OSF/1
B Unix
B CNK/SLES 9
W EWS-UX/V
HI-UX/MPP
B Others

Systems

06/1995
06/1996
06/1997
06/1998 |
06/1999
06/2000
06/2001
06/2002
06/2003
06/2004
06/2005
06/2006
06/2007
06/2008
06/2009
06/2010

TOP50

|

Processor Family Share Over Time
1993-2009

500

400

300

200

100

Power
W Intel EM64T
M Intel IA-32
B MIPS
M Sparc
M PA-RISC
M Cray
M Alpha
B AMD x86_64
M Fujitsu
W NEC
M Intel IA-64
M Intel i860
Others

06/1993
06/1994

06/1995
06/1996
06/1997
06/1998
06/1999
06/2000
06/2001
06/2002
06/2003
06/2010

TOP50

j

Top 500 in 2010

Source BBC http://news.bbc.co.uk/2/hi/technology/10187248.stm

"~ AMD

Intel

Moving to a new era

1990 2010

— Many architectures
» Evolving fast

— One architecture

» Few vendor variants

— Many OS, Compilers, libraries
» optimized to a given
architecture — Little increase in single

— Stead increase of single processor speed
processor speed

» Faster clock

— One Base Software System

— Opportunity to tune

» flexible instruction pipelines Performances of application
» Memory hierarchy software
— High level software often » Software specific to Pentium3
unable to exploit all these still optimal for latest INTEL

goodies and AMD cpus

HEP SOFTWARE IN THE
MULTICORE ERA

HEP software on multicore:

an R&D project (wp8 in CERN/PH)

The aim of the WP8 R&D project is to investigate novel software
solutions to efficiently exploit the new multi-core architecture of
modern computers in our HEP environment

Motivation:
industry trend in workstation and “medium range” computing

Activity divided in four “tracks”
» Technology Tracking & Tools
» System and core-lib optimization

» Framework Parallelization
» Algorithm Optimization and Parallelization

Coordination of activities already on-going in exps, IT, labs

Where are VWE?

Experimental HEP is blessed by the natural parallelism of
Event processing

— HEP code does not exploit the power of current processors
» One instruction per cycle at best
» Little or no use of vector units (SIMD)
» Poor code locality
» Abuse of the heap

— Running N jobs on N=8/12 cores still “efficient” but:

» Memory (and to less extent cpu cycles) wasted in non sharing
* “static” condition and geometry data

* |/O buffers
 Network and disk resources

» Caches (memory on CPU chip) wasted and trashed
* LI cache local per core, L2 and L3 shared
* Not locality of code and data

This situation is already bad today, will become only worse in future
many-cores architecture

Code optimization

— Ample Opportunities for improving code performance

» Measure and analyze performance of current LHC physics
application software on multi-core architectures

» Improve data and code locality (avoid trashing the caches)
» Effective use of vector/streaming instruction (SSE, future AVX)
» Exploit modern compiler’s features (does the work for you!)
— See Paolo Calafiura’s talk @ CHEPO9.
http://indico.cern.ch/contributionDisplay.py?contribld=517&sessionld=1&confld=35523
— Direct collaboration with INTEL experts established to help
analyzing and improve the code

— All this is absolutely necessary, still not sufficient to take full
benefits from the modern many-cores architectures
» NEED work on the code to have good parallelization

Instrument, measure, improve

— Experiment frameworks (CMSSW, Gaudi, Geant4) instrumented
to capture performance counters in specific context (by module,
by G4-volume, by G4-particle)

— All experiments, G4, Root successfully reduced memory
allocation

— Use of streaming/vector instructions improved float algorithms
used in reconstruction by factor 2 (theoretical max is 4)

» Promising for double-precision in next generation INTEL/AMD cpus
— Speed-up observed when using auto-vectorization in gcc 4.5

— Work started to improve code locality (reduce instruction
cache-misses)

Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process!?

Event Event- Event- Event-
specific specific specific specific
data data data data
Global
data

—> multi-process vs multi-threaded
- Read-only:

Copy-on-write, Shared Libraries
—> Read-write:

Shared Memory, Sockets, Files

Multithreaded Geantd (GeantdMT)

e Event-level parallelism to simulate separate events by multiple threads
e Efficiency for future many-core CPUs

e Testing and validation on today’s 4-, 8- and 24-core nodes

e Preliminary results available based on testing on fullCMS benchl.g4

e Patch parser.c of gcc to output static and global declarations in Geant4
source code and add the “__thread” keyword

e Separate and share read-only data members : Geant4 parameterised
geomeries and replicas, Geant4 materials and particles, Geant4 physics
tables, etc.

e Custom malloc library to support thread private allocation

e Modified G4Navigator to remove unnecessary updates to G4cout and
G4cerr precision (shared variables)

“Multi-core & multi-threading: Tips on how to write “thread-safe” code in Geant4”,

Xin Dong and Gene Cooperman, 14th Geant4 Users and Collaboration Workshop Search,
http://indico.cern.ch/sessionDisplay.py?sessionId=68\&slotId=0\&confId=44566#2009-
and http://indico.cern.ch/conferenceDisplay.py?confId=44566

Experimental Results on 24-core Intel Xeon 7400 Computer

By segregating read-write data members, large read-only memory chunks
are formed. Copy-On-Write does not replicate those read-only chunks.
(Geant4dMT + COW)

e Separate Processes: No reduction for the memory footprint

e Geant4 + COW: Share geometries (no replica or parameterized geometry)
e GeantdMT + COW: Reduce the memory footprint

e Geant4MT: Reduce the memory footprint

Tested on fullCMS benchl.g4 with 24 workers and 4000 events per worker
(electromagnetics).

Implementation Total Memory | Additional | Total Memory | Runtime
on master| Memory (master
per Worker | + 24 workers)
Separate Processes 250 MB 250 MB 6 GB 4575 s
Original Geant4 + COW 250 MB 70 MB 2G MB 4571 s
GeantdMT + COW 250 MB 20 MB 730 MB 4540 s
Geant4dMT 24 threads 250 MB 20 MB 730 MB |4510 s

Performance After Output Privatization

Removal of writes to shared G4cout.precision on 4 Intel Xeon 7400 Dunnington

Number of Before Removal After Removal
Workers | # Instructions | L3 References ||L.3 Misses|| CPU Cycles | [L3 Misses| Time | Speedup
1 1,598G 87415M 293M 1945G 308M|| 6547s 1
6 1,598G 87878M 326M 2100G 302M | 1087s 6.02
12 1,598G 88713M 456M 3007G 302M| 543s 12.06
24 1,599G 88852M 51" 3706G 294M| 271s 24.16
Allocator comparison on 4 AMD Opteron 8346 HE
#WKks. ptmalloc2 ptmalloc3 hoard tcmalloc tpmalloc
Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup
1 9923s 1 110601s 1 | 10503s 119918s 1 | 10090s 1
2 4886s 2.03| 6397s 1.66 | 6316s 1.66 | 4980s 1.99 | 5024s 201
4 2377s 417 | 4108s 2.58 | 2685s 391 2564s 3R7 1 _2504s 403
8 1264s 7.85| 2345s 452 1321s 7.95] 1184s 8.37| 1248s 8.08
16 797s 1246 | 1377s 7.0 | 691s 15.20|_660s 1502 623s 16.20

Event Data

Persistency
Stream

’ GaudiPython Parallel Co-ordinator
Initialize()

Run()
Finalize()

Worker Conf.
(No Input
Output)

“._Reader Conf.
~.(No Algs

. Writer Conf. -
No Inpu
- ‘j

No Ol}Pﬁf) L Event
7 Output
Output Streams
. i Histo Persistency
All Aigorthms FileRecords Pers
. Algorithms
executed
sequentially
Histo
output

GaudiPython parallel

GaudiPython Parallel

— Reconstruction (Brunel)

» FEST-2009-Data.py : 1000 Events
* From $BRUNELOPTS

Serial 1334 47

parallel=5 317 47

~|.5s/event
Parallel Overhead 3%
Speedup Near-Linear

1287

280

4.6

24000INN @Y1 14S"Hd 0

1/1¢/9

U2 uJ49d@)YIws uiod

PROOF Lite

PROOF Lite is a realization of PROOF in 2 tiers

The client starts and controls directly the workers
Communication goes via UNIX sockets
No need of daemons:

workers are started via a call to ‘system’ and call back the
client to establish the connection

Starts Np, workers by default
4 —

(W
Kiw
(W

= —

/O device(s) on a single
machine

- : .
2500_ 24 core HP DL580,48 GB RAM iy
- I/O devices tested:
£ 500 .4 SAS disks 74 GB 10k RPMs.RAIDO
o | 2 SSD disks 160 GB Intel X25-M, RAIDO
g 400 *| SSD disk 160 GB In_teI X25-M
2 | *NFSvia | GB/s NIC
S 300 - .
o B »
200:_ - :]] " - ™~ " :
- . i*‘ NFS 1Gbis i -
100l 7 = o . .
- ,,,.l-'"r SSDx1
0_1.4.111|1.|||11.||11[.111
0 5 10 15 20 25
workers

Wednesday, March 10, 2010

Algorithm Parallelization

— Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

» Prototypes using posix-thread, OpenMP and parallel gcclib

» On going effort in collaboration with OpenLab and Root teams to
provide basic thread-safe/multi-thread library components
* Random number generators
* Parallel minimization/fitting algorithms

* Parallel/Vector linear algebra

— Positive and interesting experience with MINUIT

» Parallelization of parameter-fitting opens the opportunity to enlarge the
region of multidimensional space used in physics analysis to essentially
the whole data sample.

21

RooFit/Minuit Parallelization

— RooFit implements the possibility to split the likelihood calculation

over different threads

» Likelihood calculation is done on sub-samples
» Then the results are collected and summed
» You gain a lot using multi-cores architecture over large data samples,

scaling almost with a factor proportional to the number of threads
— However, if you have a lot of free parameters, the bottleneck

become the minimization procedure
» Split the derivative calculation over several MPI processes

» Possible to apply an hybrid parallelization of likelihood and minimization
using a Cartesian topology (see A.L. CHEPQO9 proceeding, to be published

on ...)
* Improve the scalability for case with large number of parameters and large
samples

— Code already inside ROOT (since 5.26), based on Minuit2 (the OO
version of Minuit)

22

Parallel MINUIT

Alfio Lazzaro and Lorenzo Moneta

— Minimization of Maximum Likelihood or y? requires iterative computation of
the gradient of the NLL function

IN % 3 N N A N o j species (signals, backgrounds)
0‘\15 ~ NLL(6 +d) . NLL(6y —d) NLL = In Z n; | — Z hlz n; P n, number of events for specie j
00 fo 2d =1 im1 = : P, probability density functions (PDFs)

N number total of events to fit

— Execution time scales with number 6 free parameters and the number N of input
events in the fit

— Two strategies for the parallelization of the gradient and NLL calculation:

|. Gradient or NLL calculation on

Same work for Each process does Same work for
. each process: the calculation of a each process:
the same multi-cores node (OpenMP) Initialization of the specific sub-sample Conclusion of the
|. Distribute Gradient on different minimization step ofderivates minimization step
. — B o & e m e
nodes (MPIl) and parallelize NLL N e I | B | ——
, . | : | | | i
calculation on each multi-cores s H e [B s b F
node (pthreads): hybrid solution stat Split of Scatter-Gather of Start
Iteration parameters derivate values: new iteration

each process has
all values

23

24

Test @ INFN CNAF cluster, Bologna (ltaly)

3 variables, 600K events, 23 free parameters

PDFs per each variable: 2 Gaussians for signal, parabola for background

Sequential execution time (Intel Xeon @ 2.66GHz): ~80 minutes

37.5
35.0 Overall speed-up s
32.5 Scalability limitation due to the 350
30.0 sequential part of the code 325
27.5 30.0
25.0 27.5
25.0
g 225 s
5 200 Ezvo
9 17.5 $17s
2 a
“ 15.0 15.0
12.5 3
10.0
10.0 y
7.5 0 5.0
5.0 & e
2.5 / 0'00‘0 25 50 75 100 125 150 175 200 225 25.0 27.5 30.0 32.5 35.0 37.5
0.0 "‘ Number of Processors
00 25 5.0 75 10.0 125 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5

* Double_t RooNLLVarMPI::evaluatePartition() * MPI_Allreduce() * MPLInit() ~ other = ideal
Number of Processors

o [HxHy=1] ® [Hx=1Hy] * [Hx=2Hy] [Hx=3Hy] = ideal ROONLLVarMPI::evaluatePartition()

does the NLL calculation: excellent scalability

DEPLOYMENT ISSUES

25

Need for Dedicated Batch Queues

LSF TESTING : RESULTS Using standard generic Queues

Parallel | nTests Average | Max Wait | Min Wait
Wait(s) (s) (s)

48.37 1072

412.29 8138 3

4608 35987 3
)
4

OO 00 B WD

170
171
134
121

31345 137068
41990 136763

412s = 6m 52s
4608s =1h 16m 48s
31345s =8h 53m 25s
41990s = 11h 39m 50s

136763s = 37h 539m 23s

0lLoc/Lo/vL

9I02NINIA %Y - LdS-Hd
Yo’ uleo@ylws uioa

How to submit to OSG

universe = grid

GridResource = some grid host

PBS

(host_xcount=1)(xcount=8)(queue=?)
LSF

(queue=?)(exclusive=1)

Condor

GlobusRSL = MagicRSL

executable = wrapper.sh

arguments = arguments (condorsubmit=(‘+WholeMachine’ true)
should transfer files = yes
when to transfer output = on exit
transfer input files = 1inputs
ansfer output_files = output @

lllllllllllll

www.cs.wisc.edu/Condor WISCONSI
aueue

MPI and multi-thread support in EGEE : examples

e.g. single whole node with a minimum of 4 cores:
SMPGranularity = 4 ;

WholeNode = True ;

PURE MPI

He.g. 16 MPI processes:
CPUnumber = 16 ;

e.g. 16 MPI processes, whole nodes, a minimum of 4 cores each:
CPUnumber = 16 ;

SMPGranularity = 4 ;

WholeNode = True ;

HYBRID MULTI-THREAD/MPI
e.g. 4 MPI processes, 1 per node, a minimum of 4 cores each:
NodeNumber = 4 ;
SMPGranularity = 4 ;
WholeNode = True ;

The Accounting Problem
BZ Matt Mackall
e

We save memory by sharing it between processes

...but we count that memory multiple times when
reporting it

...and we allocate more memorythnan is actually
available

The numbers don't add up!

Users and developers can't/get a good sense of
how memory is used

They end up bailinQ)out the system by throwing
more memory-at'it

http://www.selenic.com/smem/

Pagemap and friends Matt/Mackall

In 2007, | attacked this problem from the kernel
side with pagemap

The pagemap interface exposes the mapping from
virtual to physical memory andhother details

Along the way, two new concepts:

PSS (Proportional Set $ize)
a mapping's fair sharelof sifared memory

USS (Uniqgue Set Size)
a mapping's non-oxyerlapping memory usage

...and some proef-of-concept graphical tools

http://www.selenic.com/smem/

Memory accounting using smem:

|5 cms reco processes forked by one master:
pretended total virtual memory used: 21GB, real: 5.7GB

smem

PID User Comm Swap USS PSS RSS
32116 innocent top 0 616 651 1204
31962 innocent -tesh 0 1552 1789 2532
30747 innocent -tcsh 0 2860 3309 3864
32123 innocent /usr/bin/python /afs/cern.c 0 7216 7257 7880
31911 innocent cmsRun reco_ RAWZDIGI_RECO_p 0O 84176 137545 940336
31945 innocent crnsRun reco_ RAW2DIGI_RECO_p 0 303436 357363 1170280
31936 innocent crnsRun reco_RAWRDIGI_RECO_p 0O 304552 358555 1172184
31937 innocent crnsRun reco_ RAWRDIGI_RECO_p 0O 309060 362986 1175968
31944 innocent crnsRun reco_RAW2DIGI_RECO_p 0 309860 363762 1176520
31931 innocent cmsRun reco_ RAW2DIGI_RECO_p 0 311472 365484 1179082
31939 innocent crnsRun reco_ RAW2DIGI_RECO_p 0 313060 366972 1179796
31942 innocent crnsRun reco_RAW2DIGI_RECO_p 0 313232 367179 1180212
31943 innocent cnsRun reco_RAWRDIGI_RECO_p 0O 313920 367814 1180312
31938 innocent crnsRun reco_ RAW2DIGI_RECO_p 0O 314840 368784 1181944
31935 innocent cnsRun reco_ RAWZDIGI_RECO_p 0 315172 369093 1182048
31934 innocent crnsRun reco_ RAW2DIGI_RECO_p 0 315220 369173 1182436
31933 innocent crnsRun reco_ RAW2DIGI_RECO_p 0O 315520 369491 1182824
31932 innocent cnsRun reco_RAWRDIGI_RECO_p 0O 316208 370235 1183892
31940 innocent crnsRun reco_RAW2DIGI_RECO_p 0 318144 372083 1185212
31941 innocent cmsRun reco_ RAWZ2DIGI_RECO_p 0 329432 383356 1196240

701 04799548 5662670 18664736
top:
PIDUSER PR NI VIRT RES SHR S %CPU %MEM TIME+ P CODE DATA COMMAND

31931 innocent 20 0 I1315m |.1g I133m R 100.0 4.8

3:27.43 0 108

l.1g

cmsRun

Memory accounting using “smaps”

Developed in SFT by Pere Mato and Eoin Smith
/afs/cern.ch/sw/lcg/external/smaps/ 1.0

Process Summary at : Mon Mar 1 12:25:51 2010

-tecsh
-tesh
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16
cmsRun reco_R children=16

29384 - Rss :
29800 - Rss:

32

3592 - Size: 68452 - Code(priv/shar): 0/ 872 - Data(priv/shar): 2604/ 116
3752 - Size: 68588 - Code(priv/shar): 4/ 896 - Data(priv/shar): 273
1075128 - Code(priv/shar) : 48/1256 - Data(priv/shar

Rss:
Rss:
Rss:
Rss:
Riss :
Rss:
Rss:
Rss:
Rss:
Riss :
Rss:
Rss:
Rss:
Rss:
Riss :
Rss:
Rss:

940144 Size :

1175932 Size :

1167384 Size
1178768 Size
1171224 Size :
1182340 Size
1170712 Size :
1174796 Size
1180608 Size

1185048 Size

1180312 Size
1177604 Size

1150596 Size

1334852 - Code(priv/shar)

Total Size : 2038.26 Mb
Total Rss : 19305.10 Mb

: 0/1060 - Data(priv/shar)
: 1325148 - Code(priv/shar) :
: 1337580 - Code(priv/shar) : O/ 1060 - Data(priv/shar)
1331516 - Code(priv/shar) : 0/1060 - Data(priv/shar) :
: 1337080 - Code(priv/shar)

1327936 - Code(priv/shar) :
: 18330972 - Code(priv/shar)
: 1336912 - Code(priv/shar)
1179804 Size :

0/1060 - Data(priv/shar)

: 0/1060 - Data(priv/shar)

0/1060 - Data(priv/shar)

: 0/1060 - Data(priv/shar)
: 0/1060 - Data(priv/shar)
1337376 - Code(priv/shar) :
: 1343144 - Code(priv/shar)
1185840 Size :

0/1060 - Data(priv/shar)

: 0/1060 - Data(priv/shar)
1346956 - Code(priv/shar) :
: 1340232 - Code(priv/shar) :
: 1837220 - Code(priv/shar)
1175464 Size :

0/1060 - Data(priv/shar)
0/1060 - Data(priv/shar)

: 0/1060 - Data(priv/shar)
1334584 - Code(priv/shar) :
: 1310248 - Code(priv/shar)
1184504 Size :

0/1060 - Data(priv/shar)

: 0/1060 - Data(priv/shar)
1343256 - Code(priv/shar) :

0/1060 - Data(priv/shar)

20

: 84272/854568
308984/865888
300404/865920
311996/865712
304596/865568
316080/865200
303708/865944
308208/865528
314188/865360

313760/864984

318624/865364
319400/865380
313892/865360
311888/864656
309460/864944
284504/86503:
318240/865204

Real:~ 300 x 16 + 85 + 865 MB =5.75 GB

33

Summary

— The stagnant speed of single processors and the narrowing of the
number of OSs and computing architectures modify the strategy
to improve the performance of software applications

» Aggressive software optimization tailored to the processor in hand

» Parallelization

» Optimization of the use of “out-core” resources

— Experimental HEP is blessed by the natural parallelism of event
processing:

» Very successful evolution of “frameworks” to multi-process with read-
only shared memory

» Exploiting this new processing model requires a new model in computing
resources allocation as well:

* The most promising solution is full node allocation

