
Running a typical ROOT HEP analysis
on Hadoop/MapReduce

Stefano Alberto Russo – Michele Pinamonti – Marina Cobal

CHEP 2013 – Amsterdam – 14-18/10/2013

● The Hadoop/MapReduce model

● Hadoop and High Energy Physics

● How to run ROOT on Hadoop

● A real case: a top quark analysis

● Results and conclusions

Topics

DISCLAIMER:
This talk is about computing architecture, it is not a not performance study.

2

“Standard” distributed computing model:
 storage and computational resources of a cluster as two
 independent, well logically-separated components.

Background

Bottleneck for data-intensive applications!

3

Two components:

1. The Hadoop Distributed
 File System (HDFS)

2. The MapReduce
 computational model
 and framework

The Hadoop/MapReduce model

New idea: overlap storage elements with the computing ones

 the computation can be scheduled on the cluster elements
 holding a copy of the data to analyze: data locality

4

On HDFS, files are:

● Stored by slicing them
 in chunks (i.e. 64 MB, 1 GB)

● ..which are replicated across
 the cluster for redundancy
 and workload distribution.

- No RAID
- Commodity hardware:
 a disk can (and will) fail,
 sooner or later

The Hadoop Distributed File System (HDFS)

FILE

Chunk Chunk Chunk

5

The MapReduce model and framework

Chunk 3

Chunk 1

Chunk 2

Chunk 7

Chunk 5

Chunk 4

Chunk 6

Node 1

Node 2

Node 3

Map(3)

Map(1)

Map(7)

Map(2)

Map(5)

Map(6)

Map(4)

Reduce(All)

The Map() functions are
executed in-place on the chunks,

on the nodes where data is stored.

The Map() functions are
executed in-place on the chunks,

on the nodes where data is stored.

FILE CPUS

● Example: word count

! ● You do not ask Hadoop
for cpu slots, you ask to
analyze a dataset 6

The MapReduce model and framework

Another basic assumption: a trivial Reduce phase.
easy to compute and almost I/O free

No communication between Maps...

MapReduce requires an embarrassing parallel problem.

 NOT I/O

OPTIMIZED

7

Hadoop and HEP (1)

Particle collision events are independent:
 embarrassing parallel problems

Simple merging operations: sum numbers, sum historgrams..

Usually, data to analyse accessed over and over again to finalize
physics results: potential advantage from data localiy

In High Energy Physics (HEP):

(Store once, read many)

8

Hadoop and HEP (2)

“Natural” approach:

● Map: processes a chunk of the data set, analysing it event by event
● Reduce: collect Map's partial result merging them.

9

Hadoop and HEP (2)

“Natural” approach:

Drowbacks:

1) Events in plain text, CSV style: lot of unnecessary I/O reads

 Ref: Maaike Limper, An SQL-based approach to Physics Analysis, CHEP2013

 (typical HEP analysis requires only a few out of the many variables available)

Not column-based storage ...

● Map: processes a chunk of the data set, analysing it event by event
● Reduce: collect Map's partial result merging them.

10

Hadoop and HEP (2)

“Natural” approach:

2) Frameworks for HEP developed, maintained and used by large
communities over several years (ROOT):
 - porting code could be very challenging and time consuming
 ...and non-optimised MapReduce code can easily lead to waste CPU

Drowbacks:

1) Events in plain text, CSV style: lot of unnecessary I/O reads

 Ref: Maaike Limper, An SQL-based approach to Physics Analysis, CHEP2013

 (typical HEP analysis requires only a few out of the many variables available)

 Ref: Zbigniew Baranowski, et Al,Sequential Data access with Oracle and
Hadoop: a performance comparison, CHEP2013

● Map: processes a chunk of the data set, analysing it event by event
● Reduce: collect Map's partial result merging them.

Not column-based storage ...

11

Hadoop and HEP (3)

1) Transparency for the data:
 let binary datasets be uploaded on HDFS without changing format;

2) Transparency for the code:
let the original code run without having to modify a single line;

3) Transparency for the user:
 avoid the users to have to learn Hadoop/MapReduce, and let them

 interact with Hadoop in a classic, batch-fashioned behavior.

 GOALS:

- run ROOT on Hadoop, and
- use its original data format which provides column-based storage.

 IDEA:

12

● The Hadoop/MapReduce framework and its native API are written in
the Java programming language.

● Support for other programming languages is provided, but:
serious limitations on the input/output side when working with
binary data sets.

● ROOT data is binary

(Hadoop was developed with textual analyses in mind)

...chunking binary files without corrupting

data is NOT possible!

Hadoop and HEP (4)

Chunk 3 Map(3)
?

PROBLEMS:

13

 One Map = One file = one HDFS block (chunk)

SOLUTIONS: Transparency for the (binary) data

● Data can be stored on the Hadoop cluster without
conversions, in its original format.

ROOT on Hadoop/MapReduce (1)

 Other approaches are possible, but much more effort required

● Map tasks will be in charge of analyzing one file, in its
entirety

● Corruptions due to chunking binary data are avoided

 (set chunk size >= file size per file)

NO chunking:

14

SOLUTIONS: ...and what about parallelism?

FILE(s)

Chunk Chunk Chunk

Natural approach

Proposed approach

FILE

Chunk Chunk Chunk

FILE FILE

SET OF FILES
Input

Parallelizable
unit

Input

Parallelizable
unit

One Map Task = One chunk = one file to analyze

 Working conditions imposed:

Now the parallelization degree goes with the number of files!

ROOT on Hadoop/MapReduce (1.1)

15

 HEP datasets are usually composed by several files

I.e. ATLAS D3PD's storage schema:
Object Order of

Magnitude
Type On Hadoop/Mapreduce

Event 1 ROOT data Unknown (binary)

File 102 - 104 ROOT file One chunk

Luminosity block 104 Set of Files Directory

LHC Run 105 - 106 Set of Lum. blocks Directory

Data set 105 - 109 Set of LHC Runs Directory (input dataset)

Dataset: ~ 103-105 files

ROOT on Hadoop/MapReduce (1.2)

SOLUTIONS: ...and what about parallelism?

16

1. Java Map and Reduce tasks as wrappers for ROOT

2. Let ROOT access the data from a standard file system

 For every Map task:

● Local replica available:

● Local replica not available:

Transparency for ROOT:SOLUTIONS: Transparency for the code

HDFS file (block) to analyze can be found and therefore
accessed on the local, standard file system, i.e. Ext3.

access the file to analyze via network using Hadoop's
file system tools

or.. use FUSE

Bottom line: bypass Hadoop

ROOT on Hadoop/MapReduce (2)

17

Easy to write a Java MapReduce job acting as a wrapper for user's code,
i.e RootOnHadoop.java:

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

SOLUTIONS: Transparency for the user

ROOT on Hadoop/MapReduce (3)

● Just few guidelines for the user code to make it work

18

Ext3

HDFS

Under the hood..

Hadoop/MapReduce

framework

Java Map task
(wrapper)

 Obtain file location and

 set access method

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

19

Ext3

Under the hood..

Hadoop/MapReduce

framework

HDFS
 User
Map code

Java Map task
(wrapper)

Binary input
Data set

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

20

Ext3

Under the hood..

Hadoop/MapReduce

framework

 User
Map code

Java Map task
(wrapper)

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Binary input
Data set

HDFS

21

Ext3

Under the hood..

Hadoop/MapReduce

framework

 User
Map code HDFS

Maps
Output

Binary output
HDFS location

Java Map task
(wrapper)

Binary input
Data set

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

22

Ext3

HDFS

Under the hood..

Hadoop/MapReduce

framework

 User
Map code

Binary output

HDFS location

Java Map task
(wrapper)

Java Reduce task
(wrapper)

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Maps
Output

Binary input
Data set

23

Binary output
HDFS location

Ext3

HDFS

Under the hood..

Hadoop/MapReduce

framework

User
Reduce code

 User
Map code

Java Map task
(wrapper)

Java Reduce task
(wrapper)

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Maps
Output

Binary input
Data set

All Maps

outputs

24

Binary output
HDFS location

Binary output

HDFS location

Ext3

HDFS

Under the hood..

Hadoop/MapReduce

framework

User
Reduce code

 User
Map code

Java Map task
(wrapper)

Java Reduce task
(wrapper)

Final output

 # hadoop run RootOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Maps
Output

Binary input
Data set

All Maps

outputs

25

Binary output
HDFS location

Binary output

HDFS location

 ROOT on Hadoop has been tested on a real case: the
top quark pair production search and cross section mea-
surement analysis performed by the ATLAS collaboration

A real case: a top quark analysis (1)

Basics of the analysis:

Based on a cut-and-count code: every event undergoes a
series of selection criteria, and at the end is accepted or not.

Cross section obtained by comparing numbers (number of
selected events with the luminosity, the efficiency in the selection of
signal events, and the expected background events.)

Reduce

Map

26

A real case: a top quark analysis (2)

The dataset, data taking conditions:

Data has been taken with all the subsystems of the ATLAS detector in
fully operational mode, with the LHC producing proton-proton collisions
corresponding to a centre of mass energy of 7 TeV with stable beams
condition during the 2011 run up to August.

The dataset, in numbers:

● 338,6 GB (only electron channel D3PDs)
● 8830 files
● average size: ~ 38 MB
● maximum file size: ~ 48 MB

Every file fits in a default HDFS chunk size of 64 MB!

Data copied straightforward from CERN Tier-0 to the Hadoop ClusterData copied straightforward from CERN Tier-0 to the Hadoop Cluster
27

A real case: a top quark analysis (3)

The test cluster:
● Provided by CERN IT-DSS group

● 10 nodes, 8 cpus per node

● Max 10 Map tasks per node

● 2 replicas per file

The top quark analysis code:

● ROOT-based, treated as a black magic box

● Compiled without any modification!

● Has ben stored on the Hadoop File System as well

28

Results (1)

Worked as expected:

● Data locality ratio: 100%

Using the Delayed Fair Scheduler By Facebook
designed for (and tested to) give data locality ratios
close to 100% in the majority of the use-cases.

(every file is read locally)

29

Results (2)

Data locality 100% and data transfers at runtime:

● Performance in terms of time still to be evaluated
 ...coparision is hard (apples Vs bananas issue)

30

Conclusions – Pros and Cons

Typical HEP analyses can be easily ported to a MapReduce model

In Hadoop network usage for accessing the data reduced by several
orders of magnitude thanks to the data locality feature

Transparency can be achieved quite easily

Bypassing some Hadoop components permits to:

● run standard code on standard, local file systems at maximum speed
● fine tuning (SSD caching, BLAS/LAPACK..)

..while:
exploiting the innovative features of Hadoop/MapReduce and HDFS

easy to manage, fault tollerant and scalable infrastructure (plug/unplug)

open source, widely used and well maintained

...and the method actually works, positive feedback received
 i.e. Uni LMU ATLAS group, poster here at CHEP 2013

“Evaluation of Apache Hadoop for parallel data analysis with ROOT” 31

Conclusions – Pros and Cons

Java and ROOT overhead to start many jobs
Performance to be evaluated

Bottomline: Hadoop forced to work unnaturally
bugs when working with blocksize > 2 Gb to be fixed

(already investigated by the community)

...worth to investigate, spend time for tuning, find a
metric to measure performance?

Tuning: - JVM reuse, Map startup improvement;
 - Latency (Heartbeat) optimization...

32

Conclusions – Pros and Cons

 Thanks for your attention!

Network usage for accessing the data reduced by several orders of magnitude thanks to
Hadoop's data locality feature. Same data accessed over and over.

Transparency can be achieved quite easily

Bypassing some Hadoop components permits to:
● run standard code on standard, local file systems at maximum speed
● fine tuning (SSD caching, BLAS/LAPACK..)

..while:
exploiting the innovative features of Hadoop/MapReduce and HDFS

easy to manage, fault tollerant and scalable infrastructure

..and is open source, widely used and well maintained

Hadoop and ROOT overhead to start many jobs (Performance to be evaluated)

Hadoop forced to work unnaturally
bugs when working with blocksize > 2 Gb to be fixed (already investigated)

 ...questions? stefano.alberto.russo@cern.ch

Typical HEP analyses can be easily ported to a MapReduce model

Demo code 33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

