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Context for discussion
We are a close to having real data, real analyses, and 
hopefully real excitement!
‣ if we want to converge on common tools, it will be 
much easier to do that now

Some discussions have begun between ATLAS and CMS 
related to the creation of a joint statistics committee
‣ to discuss conventions, tools, combinations, etc...

Next PhyStat meeting June 27-29
‣ will focus on LHC physics & statistical problems

After Oxford PhyStat meeting, René  asked me to think 
about a statistical framework for ROOT
‣ beyond TLimit & TRolke, and interfaced with RooFit
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Requirements for the Framework
In addition to providing tools for simple calculations, 
the framework should 
‣ be able to combine the results of multiple 
measurements, 
‣ be able to incorporate systematic uncertainty, 
‣ facilitate the technical aspects of sharing code

Both LEP and Tevatron experiments have created tools 
that combine multiple channels and include systematic 
uncertainties, but
‣ the tools generally implement a specific technique,
‣ and combinations require significant manual 
intervention
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Additional Requirements
There are few major classes of statistical techniques: 
‣ Likelihood: 

● All inference from likelihood curves
‣ Bayesian: 

● Use prior on parameter to compute P(theory|data)
‣ Frequentist: 

● Restricted to statements of P(data|theory)

Even within one of these classes, there are several 
ways to approach the same problem.
‣ The framework should support each of these types 
of techniques, and provide common abstractions
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Comparison of Methods
Most significant result from my 
PhyStat05 work was this 
comparison of coverage for 
several common methods which 
can incorporate systematic 
errors
‣ Clearly useful to make 
comparisons using same data 
and same assumptions
● a nice feature of TMVA!

‣ If Atlas used λP method and 
CMS used ZN, then they could 
“discover” with 56% less data!
● a bad situation for ATLAS
● a bad situation for HEP
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an approximation of the full construction, that does
not necessarily cover. To the extent that the use of
the profile likelihood ratio as a test statistic provides
similar tests, the profile construction has good cover-
age properties. The main motivation for the profile
construction is that it scales well with the number of
nuisance parameters and that the “clipping” is built
in (only one value of the nuisance parameters is con-
sidered).

It appears that the chooz experiment actually
performed both the full construction (called “FC cor-
rect syst.”) and the profile construction (called “FC
profile”) in order to compare with the strong confi-
dence technique.36

Another perceived problem with the full con-
struction is that bad over-coverage can result from
the projection onto the parameters of interest. It
should be made very clear that the coverage proba-
bility is a function of both the parameters of interest
and the nuisance parameters. If the data are con-
sistent with the null hypothesis for any value of the
nuisance parameters, then one should probably not
reject it. This argument is stronger for nuisance pa-
rameters directly related to the background hypoth-
esis, and less strong for those that account for instru-
mentation effects. In fact, there is a family of meth-
ods that lie between the full construction and the
profile construction. Perhaps we should pursue a hy-
brid approach in which the construction is formed for
those parameters directly linked to the background
hypothesis, the additional nuisance parameters take
on their profile values, and the final interval is pro-
jected onto the parameters of interest.

5 Results with the Canonical Example

Consider the case btrue = 100, τ = 1 (i.e. 10% sys-
tematic uncertainty). For each of the methods we
find the critical boundary, xcrit(y), which is neces-
sary to reject the null hypothesis µ0 = 0 at 5σ when
y is measured in the auxiliary measurement. Figure 7
shows the contours of LG, from Eq. 15, and the criti-
cal boundary for several methods. The far left curve
shows the simple s/

√
b curve neglecting systematics.

The far right curve shows a critical region with the
correct coverage. With the exception of the profile
likelihood, λP , all of the other methods lie between
these two curves (ie. all of them under-cover). The
rate of Type I error for these methods was evaluated

contours for btrue=100, critical regions for ! = 1
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Figure 7. A comparison of the various methods critical bound-
ary xcrit(y) (see text). The concentric ovals represent con-
tours of LG from Eq. 15.

for LG and LP and presented in Table 2.
The result of the full Neyman construction and

the profile construction are not presented. The full
Neyman construction covers by construction, and
it was previously demonstrated for a similar case
(b = 100, τ = 4) that the profile construction gives
similar results.22 Furthermore, if the λP were used
as an ordering rule in the full construction, the criti-
cal region for b = 100 would be identical to the curve
labeled “λP profile” (since λP actually covers).

It should be noted that if one knows the likeli-
hood is given by LG(x, y|µ, b), then one should use
the corresponding profile likelihood ratio, λG(x, y|µ),
for the hypothesis test. However, knowledge of the
correct likelihood is not always available (Sinervo’s
Class II systematic), so it is informative to check
the coverage of tests based on both λG(x, y|µ) and
λP (x, y|µ) by generating Monte Carlo according to
LG(x, y|µ, b) and LP (x, y|µ, b). In a similar way, this
decoupling of true likelihood and the assumed likeli-
hood (used to find the critical region) can break the
“guaranteed” coverage of the Neyman construction.

It is quite significant that the ZN method under-
covers, since it is so commonly used in HEP. The de-
gree to which the method under-covers depends on
the truncation of the Gaussian posterior P (b|y). Lin-
nemann’s table also shows significant under-coverage
(over estimate of the significance Z). In order to ob-
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Figure 3. The signal-like region and sideband for H → γγ in
which τ is correlated to b via the model parameter a.

the likelihood function that provides the connection
between the nuisance parameter(s) and the auxiliary
measurements.

The most common choices for the likelihood of
the auxiliary measurement are L(y|b) = Pois(y|τb)
and L(y|b) = G(y|τb, σy), where τ is a constant that
specifies the ratio of the number of events one expects
in the sideband region to the number expected in the
signal-like region.d

A constant τ is appropriate when one simply
counts the number of events y in an “off-source” mea-
surement. In a more typical case, one uses the distri-
bution of some other variable, call it m, to estimate
the number of background events inside a range of
m (see Fig. 3). In special cases the ratio τ is inde-
pendent of the model parameters. However, in many
cases (e.g. f(m) ∝ e−am), the ratio τ depends on the
model parameters. Moreover, sometimes the side-
band is contaminated with signal events, thus the
background and signal estimates can be correlated.
These complications are not a problem as long as
they are incorporated into the likelihood.

The number of nuisance parameters and aux-
iliary measurements can grow quite large. For in-
stance, the standard practice at BaB̄ar is to form
very large likelihood functions that incorporate ev-
erything from the parameters of the unitarity tri-
angle to branching fractions and detector response.
These likelihoods are typically factorized into multi-

dNote that Linnemann19 used α = 1/τ instead, but in this
paper α is reserved for the rate of Type I error.

ple pieces, which are studied independently at first
and later combined to assess correlations. The fac-
torization of the likelihood and the number of nui-
sance parameters included impact the difficulty of
implementing the various scenarios considered below.

3 Practical and Toy Examples

In this Section, a few practical and toy examples are
introduced. The toy examples are meant to provide
simple scenarios where results for different methods
can be easily obtained in order to expedite their com-
parison. The practical examples are meant to ex-
clude methods that provide nice solutions to the toy
examples, but do not generalize to the realistic situ-
ation.

3.1 The Canonical Example

Consider a number-counting experiment that mea-
sures x events in the signal-like region and y events
in some sideband. For a given background rate b in
the signal-like region, say one can expect τb events
in the sideband. Additionally, let the rate of signal
events in the signal-like regions – the parameter of in-
terest – be denoted µ. The corresponding likelihood
function is

LP (x, y|µ, b) = Pois(x|µ + b) · Pois(y|τb). (14)

This is the same case that was considered in
Refs. 20,22,23,24 for x, y = O(10) and α = 5%.
For LHC searches, we will be more interested in
x, y = O(100) and α = 2.85 · 10−7. Furthermore, the
auxiliary measurement will rarely be a pure number
counting sideband measurement, but instead the re-
sult of some fit. So let us also consider the likelihood
function

LG(x, y|µ, b) = Pois(x|µ + b) · G(y|τb,
√

τb). (15)

As a concrete example in the remaining sections,
let us consider the case b = 100 and τ = 1. Opera-
tionally, one would measure y and then find the value
xcrit(y) necessary for discovery. In the language of
confidence intervals, xcrit(y) is the value of x nec-
essary for the 100(1 − α)% confidence interval in µ
to exclude µ0 = 0. In Sec. 4 we check the coverage
(Type I error or false-discovery rate) for both LP and
LG.

Linnemann reviewed thirteen methods and
eleven published examples of this scenario.19 Of the
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Neyman Construction

Many Methods, Many Similarities
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Coverage Studies

Essentially all methods start with the 
basic probability density function or 
likelihood function L( x |θr,θs )
‣ Building a good model is the hard part!
‣ want to re-use it for multiple methods
‣ want to interface to common tools
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To RooFit or Not To RooFit
The immediate question is whether this statistical 
framework should be:
‣ parallel to RooFit (with some sort of interface?)
‣ on top of or a part of RooFit

Informal survey showed significant support for RooFit, but 
some hesitation
‣ worries about RooFit doing too much for a user

● want to maintain ability to tweak the likelihood and “dig in”
‣ some worries about dependencies from a software point 
of view
● maybe a core part separated from graphics, etc...

These aspects are all part of the discussion, but
‣ hard to deny that RooFit has a large “market share”
‣ RooAbsPdf has a lot of functionality that we need

7
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RooAbsPdf: A starting point

8
Wouter Verkerke, UCSB 

Building realistic models

– Composition (‘plug & play’)

– Convolution

g(x;m,s)m(y;a0,a1)

=

! =

g(x,y;a0,a1,s)
Possible in any PDF

No explicit support in PDF code needed

Wouter Verkerke, UCSB 

Building realistic models

• Complex PDFs be can be trivially composed using operator classes

– Addition

– Multiplication

+ =

* =

Wouter Verkerke, UCSB 

Parameters of composite PDF objects

RooAddPdf

sum

RooGaussian

gauss1
RooGaussian

gauss2
RooArgusBG

argus
RooRealVar

g1frac
RooRealVar

g2frac

RooRealVar

x
RooRealVar

sigma
RooRealVar

mean1

RooRealVar

mean2
RooRealVar

argpar
RooRealVar

cutoff

RooArgSet *paramList = sum.getParameters(data) ;

paramList->Print("v") ;

RooArgSet::parameters:

1) RooRealVar::argpar : -1.00000 C

2) RooRealVar::cutoff :  9.0000 C

3) RooRealVar::g1frac :  0.50000 C

4) RooRealVar::g2frac :  0.10000 C

5) RooRealVar::mean1  :  2.0000 C

6) RooRealVar::mean2  :  3.0000 C

7) RooRealVar::sigma  :  1.0000 C

The parameters of sum
are the combined 
parameters
of its components
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The Prototype Problem Revisited
Consider this prototype problem 
for new physics searches:

Easy to code up in RooFit:

Trivial to obtain plots in three 
different formalisms:
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Figure 3. The signal-like region and sideband for H → γγ in
which τ is correlated to b via the model parameter a.

the likelihood function that provides the connection
between the nuisance parameter(s) and the auxiliary
measurements.

The most common choices for the likelihood of
the auxiliary measurement are L(y|b) = Pois(y|τb)
and L(y|b) = G(y|τb, σy), where τ is a constant that
specifies the ratio of the number of events one expects
in the sideband region to the number expected in the
signal-like region.d

A constant τ is appropriate when one simply
counts the number of events y in an “off-source” mea-
surement. In a more typical case, one uses the distri-
bution of some other variable, call it m, to estimate
the number of background events inside a range of
m (see Fig. 3). In special cases the ratio τ is inde-
pendent of the model parameters. However, in many
cases (e.g. f(m) ∝ e−am), the ratio τ depends on the
model parameters. Moreover, sometimes the side-
band is contaminated with signal events, thus the
background and signal estimates can be correlated.
These complications are not a problem as long as
they are incorporated into the likelihood.

The number of nuisance parameters and aux-
iliary measurements can grow quite large. For in-
stance, the standard practice at BaB̄ar is to form
very large likelihood functions that incorporate ev-
erything from the parameters of the unitarity tri-
angle to branching fractions and detector response.
These likelihoods are typically factorized into multi-

dNote that Linnemann19 used α = 1/τ instead, but in this
paper α is reserved for the rate of Type I error.

ple pieces, which are studied independently at first
and later combined to assess correlations. The fac-
torization of the likelihood and the number of nui-
sance parameters included impact the difficulty of
implementing the various scenarios considered below.

3 Practical and Toy Examples

In this Section, a few practical and toy examples are
introduced. The toy examples are meant to provide
simple scenarios where results for different methods
can be easily obtained in order to expedite their com-
parison. The practical examples are meant to ex-
clude methods that provide nice solutions to the toy
examples, but do not generalize to the realistic situ-
ation.

3.1 The Canonical Example

Consider a number-counting experiment that mea-
sures x events in the signal-like region and y events
in some sideband. For a given background rate b in
the signal-like region, say one can expect τb events
in the sideband. Additionally, let the rate of signal
events in the signal-like regions – the parameter of in-
terest – be denoted µ. The corresponding likelihood
function is

LP (x, y|µ, b) = Pois(x|µ + b) · Pois(y|τb). (14)

This is the same case that was considered in
Refs. 20,22,23,24 for x, y = O(10) and α = 5%.
For LHC searches, we will be more interested in
x, y = O(100) and α = 2.85 · 10−7. Furthermore, the
auxiliary measurement will rarely be a pure number
counting sideband measurement, but instead the re-
sult of some fit. So let us also consider the likelihood
function

LG(x, y|µ, b) = Pois(x|µ + b) · G(y|τb,
√

τb). (15)

As a concrete example in the remaining sections,
let us consider the case b = 100 and τ = 1. Opera-
tionally, one would measure y and then find the value
xcrit(y) necessary for discovery. In the language of
confidence intervals, xcrit(y) is the value of x nec-
essary for the 100(1 − α)% confidence interval in µ
to exclude µ0 = 0. In Sec. 4 we check the coverage
(Type I error or false-discovery rate) for both LP and
LG.

Linnemann reviewed thirteen methods and
eleven published examples of this scenario.19 Of the
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Higher-Level Abstractions
Wouter and I met a couple months ago to discuss how to 
implement a few statistical concepts on top of RooFit
‣ want class structure to maps onto statistical concepts
‣ successfully worked out a few of the methods

10

The first examples were
‣ Bayesian Posterior
‣ Profile likelihood ratio
‣ Acceptance Region
‣ Ordering Rule
‣ Neyman Construction
‣ Confidence Interval

Many concepts already have an 
appropriate class in RooFit
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An Example: Neyman Construction
Neyman Construction is 
simply a set of acceptance 
regions corresponding to 
parameter points
‣ Acceptance region needs 
ordering rule + pdf + 
confidence level

11

RooBool confidenceInterval(DataSet data)

DataSet parameterPoints
RooAbsCategory acceptanceRegion

NeymanConstruction

RooAbsPdf model
double confidenceLevel
RooAbsReal orderingRule

AcceptanceRegion

RooAbsCategory

RooAbsReal

bool upperLimit
OneSided Central

RooArgList parmsOfInterest
LogLikelihoodRatio

Note: Distinction between 
observables and parameters 
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From NLL to ProfileNLL
RooFit provides NLLVar, which interfaces to Minuit 
and provides a likelihood ratio as a function of some 
parameter.
‣ hold rest of parameters fixed

Very user friendly interface, but NLL is not so useful.  
‣ rather have profile likelihood ratio
‣ needed for limits & discovery
‣ needed for Feldman-Cousins
‣ needed for profile construction
‣ next step on our to-do list

12
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Dealing with Complex Models
BaBar was a major user of RooFit, but many groups developed 
a layer on top of RooFit to handle complex models
‣ Amir Farbin developed MLFit
‣ Frank Winklemeier developed “Bdk framework”
‣ both dealt with 100’s or 1000’s of parameters

Discussions led to a new core RooFit concepts 
‣ Model & Workspace + associated tools

13
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Model & Workspace
Wouter introduced these concepts in the previous talk

The RooAbsPdf remains unchanged, does not make a 
distinction between observable and parameter

A “Model” will make that distinction, and keep track 
of different categories/species/hypotheses/channels 
(eg. signal & background)

A “Workspace” will be a higher-level object that owns 
and manages all the parts of the Model

Add ability to persist the Model & Workspace to ease 
sharing and construction of more complex models

14
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High-Level Scripting
Experience from BaBar indicated a need for some high-
level scripting to
‣ produce complex models
‣ configure them 

Bill Quayle’s StatTools also has some XML-based layer to 
do this

In our approach, low-level issues dealt with by the Model 
& Workspace classes.  We are considering both: 
‣ dedicated classes+configuration “language”
‣ or do configuration with Python & PyRoot

Experience from BaBar favors something like PyRoot

15
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We had some discussion about providing a GUI for 
constructing large PDFs
‣ first step was to think of how to represent the PDF
‣ then think about how to interact with it
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A Model Building GUI
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A Model Building GUI
The representation is naturally a directed graph
‣ but not necessarily a Tree
‣ RooAbsPdf already knows how to build the graph
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A Model Building GUI
Want easy ability to bind variables in a TTree (or 
RooDataSet) to the PDF 

Finally we need a way to capture the result
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Variable from 
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One approach is to 
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this PDF
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Workspace object that 
represents it

Workspace 
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Comparison Tools
One of the nicest features 
of TMVA is that it allows 
one to easily compare 
several methods using the 
same data
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Figure 5:

Code Example 6:

We would like to include similar functionality in RooStats 
so that one can easily compare the results of several 
methods given the same data and the same Model
‣The models can be very complex, so want to avoid 
multiple implementations
‣Coverage studies are a good means for comparison
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MathMore

Package

FFTW3

Package

RooModels

Package

GSL

Integration, Math Libraries, 
etc.

RooFitCore

Package

RooLandau

MathCore

PackageTMath::Landau

RooAbsPdf

RooStats

PackageNeymanConstruction

TMVA

Package

MCMC

Alternative Integration 
Package

RooFunctionWrapper

TFoam

Alternative Integration 
Packages

PDE-RS

Ruby

Python

PyRoot interface

SPlot

Interoperability
Aim for high level of interoperability, needs thought.
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Review of our Goals
Provide a “common language” in terms of concepts, 
tools, and code
‣ eases communication, convergence, sharing, etc.

Maintain full flexibility and extendibility
‣ focus on interfaces, anticipate extensions by users

● build a framework, not an application
Provide some higher-level steering
‣ common at BaBar, already a few prototypes available

● perhaps in python, via PyRoot? Needs more thought
‣ perhaps a graphical user interface

Provide ability to save a model and its RooFitSummary to 
a .root file to be shared, re-used, or combined
‣ the extreme form of “publishing” your result!
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Conclusions
There seems to be a lot of support for developing common 
statistical tools / framework
‣ an important ingredient to a healthy collaboration 
‣ if tools are also common between ATLAS & CMS, it 
would greatly aid our ability to compare and combine

RooFit seems to be the natural starting point 
‣ what is there now is already very powerful!
‣ large user community already in ATLAS & CMS
‣ started to reevaluate dependencies, and re-factor?

Developing a to-do list
‣ should have prototype for June PhyStat07 Workshop
‣ could use volunteers, please contact

Now for some advice, feedback and comments....
22
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Backup

23
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Data Driven SUSY Background Estimation

The estimation of the background 
is simply B/A*C
‣ but what is significance of a 
given xobs ?

‣ propagation of error + C.H. is 
not very trustworthy

‣ build the model, and either use 
fit, Frequentist, or Bayesian

‣ a clear place to include 
correlations
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