Early LHC Opportunities

Jay Wacker SLAC

Feb 17, 2011

New Data from the Energy Frontier Aspen Winter Conference Where we're at during Aspen 2011: 40 pb⁻¹ at 7 TeV

> LHC is just beginning to broadly push past Tevatron limits

Where we'll be at by Aspen 2012: 2 fb⁻¹ at 7 TeV The reach (in mass) will double

An opportunity to improve the design of searches

Over the past few years there's been a push for less model dependent searches

Supersymmetry as an example Too many parameters so we make an ansatz $m_{\frac{1}{2}}, m_0^2, A_0, B_\mu, \mu$ $B_{\mu}, \mu \rightarrow v_{\rm EW} = 246 \,\,{\rm GeV}, \tan\beta$ Scalar Masses Gaugino Masses $16\pi^2 \frac{d}{dt} m_{Q_3}^2 = X_t + X_b$ $-\frac{32}{3} g_3^2 |M_3|^2 - 6g_2^2 |M_2|^2$ $\frac{d}{dt}M_a = \frac{1}{8\pi^2}b_a g_a^2 M_a$ $-\frac{2}{15}g_1^2|M_1|^2 + \frac{1}{5}g_1^2S,$

> Gauge interactions make particles heavier Yukawa interactions make particles lighter

mSugra and "Gaugino Mass Unification" $m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6: 2: 1$

Most models look like this

Diversity is whether squarks & Higgsinos are lighter than gluinos and sleptons are lighter than the winos mSugra and "Gaugino Mass Unification" $m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6: 2: 1$

Most models look like this

Diversity is whether squarks & Higgsinos are lighter than gluinos and sleptons are lighter than the winos

The Phenomenological MSSM The part of parameter space that was allowed circa 1981

 $m_{\tilde{q}}^2, m_{\tilde{u}^c}^2, m_{\tilde{d}^c}^2, m_{\tilde{\ell}}^2, m_{\tilde{\ell}^c}^2$

5 for 1st 2 Generations5 for 3rd Generations

 $m_{\tilde{g}}, m_{\tilde{W}}, m_{\tilde{B}}, \mu$ 4 for *-ino masses

 A_t, A_b, A_τ 3 for A-terms

 $m_{h_u}^2, m_{h_d}^2, B_{\mu}$ 3-1 for Higgs Sector

19 Dimensional Parameter Space Challenging to explore in detail: $2^{19} \sim 0.5$ Million

Berger, Gainer, Hewett, Rizzo

Imagine a simpler world...

Theory of nature is a one parameter function, y=f(x), Can only do measurements of y near x=0 that we don't know

A very complicated space to explore! ∞ -dimensional

Imagine a simpler world...

Theory of nature is a one parameter function, y=f(x), Can only do measurements of y near x=0 that we don't know

A very complicated space to explore! ∞ -dimensional In this world, the leading theory is $f(x) = e^{\alpha(x-x_0)}$

Imagine a simpler world...

Theory of nature is a one parameter function, y=f(x), Can only do measurements of y near x=0 that we don't know

A very complicated space to explore! ∞ -dimensional

In this world, the leading theory is $f(x) = e^{\alpha(x-x_0)}$

Could design a measurement strategy to discover $f(x) \neq 0, \ \alpha, \ x_0$

What happens if we're wrong about our theoretical assumption?

What happens if we're wrong about our theoretical assumption?

 $f(x) = -e^{\alpha(x-x_0)}$

f(x) is negative

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
$$f(x) = \sinh(x)$$

f(x) is negative

f(x) vanishes at 0

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
$$f(x) = \sinh(x)$$
$$f(x) = \cosh(x) - 1$$

f(x) is negative

f(x) vanishes at 0

Function & slope vanish at 0

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
$$f(x) = \sinh(x)$$
$$f(x) = \cosh(x) - 1$$
$$f(x) = \cos(x)$$

f(x) is negative

f(x) vanishes at 0

Function & slope vanish at 0

Doesn't grow asymptotically

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
 $f(x)$ is negative $f(x) = \sinh(x)$ $f(x)$ vanishes at 0 $f(x) = \cosh(x) - 1$ Function & slope vanish at 0 $f(x) = \cos(x)$ Doesn't grow asymptoticallyCould enumerate all possibilities

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
 $f(x)$ is negative $f(x) = \sinh(x)$ $f(x)$ vanishes at 0 $f(x) = \cosh(x) - 1$ Function & slope vanish at 0 $f(x) = \cos(x)$ Doesn't grow asymptotically

Could enumerate all possibilities <u>A better strategy</u>

$$f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

Easy to identify special cases

Not a cure-all

Still infinite dimensional

But there is some notion of simplicity

 $f(x) = -x^6 + x^{12}$ less likely than f(x) = 1

Not a cure-all

Still infinite dimensional

But there is some notion of simplicity

 $f(x) = -x^6 + x^{12}$ less likely than f(x) = 1

There could be technicalities:

Radius of convergence problems $f(x) = \log(1+x)$

Assumes the function is continuous/differentiable

$$f(x) = \Theta(x)$$
 $f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$

f(x) = All theories beyond the Standard Model $e^x = mSUGRA$

y = A typical LHC observable, *e.g.* Missing Energy

f(x) = All theories beyond the Standard Model $e^{x} = mSUGRA$

y = A typical LHC observable, *e.g.* Missing Energy What is a Taylor Series?

(Effective Field Theories for Collider Physics)

Limits of specific theories Only keep particles and couplings relevant for searches A full Lagrangian description

Removes superfluous model parameters Masses, Cross Sections, Branching Ratios Add in relevant modification to models (*e.g.* singlets)

Not fully model independent, but greatly reduce model dependence

Captures specific models Including ones that aren't explicitly proposed Easy to explore

(off-shell squark that is too heavy to be seen)

Directly Decaying Gluino

Keep masses and total cross section free

 $m_{\tilde{g}} \quad m_{\chi^0} \quad \sigma(pp \to \tilde{g}\tilde{g}X)$

Typical signature is 4 jets plus missing energy

Directly Decaying Gluino Study one decay mode $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0$

Sometimes this is the exact theory

Directly Decaying Gluino Study one decay mode $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0$

Sometimes this is the exact theory

Other times this is a subdominant branching ratio

 $\mathrm{Br}\sim 10\%$

New Spectra to Consider Imagine having a 300 GeV Gluino

mSUGRA would predict LSP is 50 GeV 4 jets of 90 GeV 130 GeV of Missing Energy Hard to miss

LSP could have mass of 270 GeV 4 jets of 8 GeV 15 GeV of Missing Energy Nearly impossible to see!

What are the current limits?

Hard to interpret more generally

Alwall, Le, Lisanti, JW

Alves, Izaguirre, JW

Going Forward into 2011 Want to ensure coverage isn't an accident 4 Simplified Models:

+ Simplifica 1

2 Body Direct Decay

1 Step Cascade Decay

3 Body Direct Decay

2 Step Cascade Decay

Direct Decays

One-Step Cascade Decays

Two-Step Cascade Decays

• find minimal set of *search regions* whose combined reach has universal coverage

for all masses and decay modes for three luminosity scenarios: 10 pb⁻¹, 100 pb⁻¹, 1 fb⁻¹

• Number of search regions depends on desired "Efficacy"

$$\mathcal{E}(\mathcal{M}, \mathcal{S}) = \frac{\sigma_{\lim}(\mathcal{M}, \mathcal{S})}{\sigma_{\lim}^{\text{best}}(\mathcal{M})} \geq 1 \quad \begin{array}{l} \mathcal{M} = \text{ Model} \\ \mathcal{S} = \text{ Search Region} \end{array}$$

• find minimal set of *search regions* whose combined reach has universal coverage

for all masses and decay modes for three luminosity scenarios: 10 pb⁻¹, 100 pb⁻¹, 1 fb⁻¹

• Number of search regions depends on desired "Efficacy"

$$\mathcal{E}(\mathcal{M}, \mathcal{S}) = \frac{\sigma_{\lim}(\mathcal{M}, \mathcal{S})}{\sigma_{\lim}^{\text{best}}(\mathcal{M})} \geq 1 \quad \begin{array}{l} \mathcal{M} = \text{ Model} \\ \mathcal{S} = \text{ Search Region} \end{array}$$

if $\mathcal{E} > \mathcal{E}_{crit}$ for all \mathcal{M}

- + 1.05 $\rightarrow O(30 \text{ search regions})$
- + 1.10 $\rightarrow O(16 \text{ search regions})$
- + 1.30 $\rightarrow O(6 \text{ search regions})$

+ 1.50 $\rightarrow O(4 \text{ search regions})$

• 6 search regions necessary:

Dijet high MET

Trijet high MET

Multijet low MET

Multijet very high H_T

Multijet moderate MET

Multijet high MET

cut	ch	MET	H⊤
	2+j	500	750
	3+j	450	500
	4+j	100	450
	4+j	150	950
	4+j	250	300
	4+j	350	600

Designing Optimal Regions

- Choice of multiple search regions depends upon
 - backgrounds
 - detector efficiencies & acceptances
 - how good is good enough
 - etc
- Not something a theorist should be designing too closely
- Scans are expensive for experiments, providing benchmark theories saves effort
- We've done rough exploration of corners of parameter space looking for

List of Benchmark Models

- Chosen to maximize differences in how they appear in given searches
- Simple and easy to define
- Consistent theories on their own

Name	$m_{ ilde{g}}~({ m GeV})$	$m_{ ilde{\chi}^0}~({ m GeV})$	Decay
\mathcal{M}_1	800	100	direct 2-body
\mathcal{M}_2	800	350	direct 2-body
\mathcal{M}_3	550	300	direct 2-body
\mathcal{M}_4	350	150	direct 2-body
\mathcal{M}_5	250	50	direct 3-body
\mathcal{M}_6	400	100	direct 3-body
\mathcal{M}_7	400	350	direct 3-body
\mathcal{M}_8	650	300	direct 3-body
\mathcal{M}_9	150	50	1-step cascade $(x=1/4)$
\mathcal{M}_{10}	400	80	1-step cascade $(x=1/4)$
\mathcal{M}_{11}	450	350	1-step cascade $(x=1/4)$
\mathcal{M}_{12}	600	200	1-step cascade $(x=1/4)$
\mathcal{M}_{13}	250	200	1-step cascade $(x=1/2)$
\mathcal{M}_{14}	300	50	1-step cascade $(x=1/2)$
\mathcal{M}_{15}	550	500	1-step cascade $(x=1/2)$
\mathcal{M}_{16}	700	200	1-step cascade $(x=1/2)$
\mathcal{M}_{17}	250	0	1-step cascade $(x=3/4)$
\mathcal{M}_{18}	350	200	1-step cascade $(x=3/4)$
\mathcal{M}_{19}	450	100	1-step cascade $(x=3/4)$
\mathcal{M}_{20}	900	400	1-step cascade $(x=3/4)$
\mathcal{M}_{21}	300	50	2-step cascade
\mathcal{M}_{22}	750	150	2-step cascade
\mathcal{M}_{23}	750	550	2-step cascade
\mathcal{M}_{24}	800	750	2-step cascade

$$m_{\chi^{\pm}} = m_{\chi^0} + x(m_{\tilde{g}} - m_{\chi^0})$$

Expectations for Full 2010 & 2011 Data Sets

45 pb⁻¹

1000 pb⁻¹

Future Work

Need to Expand Simplified Model Catalogue

On June 4-5, 2010 ATLAS & CMS called for more models to be searched

Workshop on Topologies for Early LHC Searches September 22 - 25, 2010 at SLAC Over 100 Participants Developed 50 Simplified Models

Leptons	Hadrons	Resonances	Exotics	Heavy Flavor
S. Chang	D. Alves	Y. Bai	S. Chang	M. Buckley
W. Cho	J. Gainer	H. Cheng	M. Baumgart	R.S. Chivukula
J. Evans	M. Gomez	J. Evans	R. Essig	L. Fitzpatrick
E. Izaguirre	E. Izaguirre	A. Freitas	J. Hubisz	R. Francescini
J. Kaplan	C. Kilic	T. Han	D. Krohn	P. Fox
M. Lisanti	M. Nojiri	J. Hewett	P. Meade	J. Kaplan
M. Luty	D. Krohn	T. Liu	D. Morrissey	P. Ko
M. Nojiri	M. Schwartz	V. Rentala	M. Papucci	E. Kuflik
T. Okui	J. Shelton	S. Su	D. Phalen	R. Lu
M. Park	M. Spannowsky	T. Tait	J. Shao	S. Mrenna
M. Perelstein	M.Strassler		T. Volansky	M. Peskin
J. Ruderman	YarkM. SpannowskyPerelsteinM.StrasslerudermanJ. WackeranzMarker		I. Yavin	K. Rehermann
V. Sanz	V. Sanz Ph		K. Zurek	M. Schmaltz
P. Schuster				M. Schwartz
D. Shih		P. Fox		E. Simmons
S. Su		R. Kitano		C. Spethmann
T. Tait		T. Okui		M. Strassler
B. Thomas		D. Shih		T. Tait
N. Toro		T. Roy		N. Toro
J. Wacker		J. Ruderman		W. Waltenberger
F. Yu				6

Follow-up to the Workshop http://LHCNewPhysics.org

¥	Overview Links & References Signatures of New		Support & Contacts Wild Page Physics at the LH		ne LH(
BLE STATISTICS	Eastica	Taus	Bottoms	Photons	Leptons	Jets
jgwacker	LHC New	Phylcs	Working	Group		
Creater New Submission My account Registered Users Recent posts Messages Log out Recently Viewood Squark Neutralino Associated Production yel Generation Composite Leptoquarks and Disparks Simplified models for colored resonances at the LHC Multijet Resonances (area production only, no MET) 4 leptons -MET or 6- lepton final states from Re- nerity violation	We are a group (NPWG) to ad- from the LHC, methods used in This effort was and Theory me- was a request by collection of 10 the LHC. The i explore all relev of results from At the meeting largelyl began d These simplifies detail important including topole	of theorian frees question Of particula unew physic initianed by tring at CEI y ATLAS as phology sets a steention is to att phase sy the LHC. Topologiss efining a set d modelu art t for optimin ggies inspire	a who have form one surrounding ar emphasis in is a searches and a workshop on RN in June 100 ad CMS to the regressentative to use these to pace, and to fac for Early LJBC of baseline top a designed to cc sing searches. I d from a broad	ned a "New Ph g characteriant mproving the n any characteri this topic at a 6. One outcost theory commu- pology sets to e- flicate more ef Searches, the pology sets, or ver signature i Particular atter- array of well-n	ynics Working ion of search n nodel-independ aution of signal joint ATLAS, e of this workin nity to help de msure that sea fective commu- participants (r) simplified mod space and inclu- tion was paid notivated theory	Group* esults lence of ls. CMS, shop vetlop a ear at orches alication beoarists lds. de to ries.

Now approaching a fully featured website with supplemental information:

Definitions of Models, Model files, LHE Files, Presentations, Refereeing, Discussions

ATLAS & CMS are beginning to use in preliminary proposals for upcoming analyses

ATLAS studying 10 Simplified Models from 0 in August Changing their triggers