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Where we’re at during Aspen 2011:
40 pb-1 at 7 TeV

Where we’ll be at by Aspen 2012:
2 fb-1 at 7 TeV

LHC is just beginning 
to broadly push past Tevatron limits

The reach (in mass) will double

An opportunity to improve the design of searches
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from Theory Space
not easy/efficient

Over the past few years there’s been a push
for less model dependent searches



Supersymmetry as an example
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Bµ, µ→ vEW = 246 GeV, tanβ

Applying the above results to the special case of the MSSM, we will use the approximation that
only the third-family Yukawa couplings are significant, as in eq. (5.2). Then the Higgs and third-family
superfield anomalous dimensions are diagonal matrices, and from eq. (5.26) they are, at 1-loop order:
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[The first and second family anomalous dimensions in the approximation of eq. (5.2) follow by setting
yt, yb, and yτ to 0 in the above.] Putting these into eqs. (5.23), (5.24) gives the running of the
superpotential parameters with renormalization scale:
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The one-loop RG equations for the gauge couplings g1, g2, and g3 were already listed in eq. (5.21). The
presence of soft supersymmetry breaking does not affect eqs. (5.21) and (5.44)-(5.47). As a result of
the supersymmetric non-renormalization theorem, the β-functions for each supersymmetric parameter
are proportional to the parameter itself. One consequence of this is that once we have a theory that
can explain why µ is of order 102 or 103 GeV at tree-level, we do not have to worry about µ being made
very large by radiative corrections involving the masses of some very heavy unknown particles; all such
RG corrections to µ will be directly proportional to µ itself and to some combinations of dimensionless
couplings.

The one-loop RG equations for the three gaugino mass parameters in the MSSM are determined
by the same quantities bMSSM

a that appear in the gauge coupling RG eqs. (5.21):
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aMa (ba = 33/5, 1, −3) (5.48)

for a = 1, 2, 3. It follows that the three ratios Ma/g2
a are each constant (RG scale independent) up to

small two-loop corrections. Since the gauge couplings are observed to unify at Q = MU = 2 × 1016

GeV, it is a popular assumption that the gaugino masses also unify§ near that scale, with a value called

§In GUT models, it is automatic that the gauge couplings and gaugino masses are unified at all scales Q ≥ MU , because
in the unified theory the gauginos all live in the same representation of the unified gauge group. In many superstring
models, this can also be a good approximation.
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etc. The first and second family squarks and sleptons with given gauge quantum numbers remain
very nearly degenerate, but the third-family squarks and sleptons feel the effects of the larger Yukawa
couplings and so their squared masses get renormalized differently. The one-loop RG equations for the
first and second family squark and slepton squared masses are
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for each scalar φi, where the
∑

a is over the three gauge groups U(1)Y , SU(2)L and SU(3)C , with
Casimir invariants Ca(i) as in eqs. (5.28)-(5.30), and Ma are the corresponding running gaugino mass
parameters. Also,
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An important feature of eq. (5.56) is that the terms on the right-hand sides proportional to gaugino
squared masses are negative, so‖ the scalar squared-mass parameters grow as they are RG-evolved from
the input scale down to the electroweak scale. Even if the scalars have zero or very small masses at
the input scale, they can obtain large positive squared masses at the electroweak scale, thanks to the
effects of the gaugino masses.

The RG equations for the squared-mass parameters of the Higgs scalars and third-family squarks
and sleptons get the same gauge contributions as in eq. (5.56), but they also have contributions due
to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order, these only appear in three
combinations:
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Note that Xt, Xb, and Xτ are generally positive, so their effect is to decrease the Higgs masses as one
evolves the RG equations down from the input scale to the electroweak scale. If yt is the largest of
the Yukawa couplings, as suggested by the experimental fact that the top quark is heavy, then Xt will
typically be much larger than Xb and Xτ . This can cause the RG-evolved m2

Hu
to run negative near

the electroweak scale, helping to destabilize the point Hu = Hd = 0 and so provoking a Higgs VEV (for
a linear combination of Hu and Hd, as we will see in section 7.1), which is just what we want.† Thus
a large top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because it
induces negative radiative corrections to the Higgs squared mass.

The third-family squark and slepton squared-mass parameters also get contributions that depend
on Xt, Xb and Xτ . Their RG equations are given by
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‖The contributions proportional to S are relatively small in most known realistic models.
†One should think of “m2

Hu
” as a parameter unto itself, and not as the square of some mythical real number mHu

. So
there is nothing strange about having m2

Hu
< 0. However, strictly speaking m2

Hu
< 0 is neither necessary nor sufficient

for electroweak symmetry breaking; see section 7.1.
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Gaugino Masses Scalar Masses

Gauge interactions make particles heavier

Yukawa interactions make particles lighter

Too many parameters so we make an ansatz
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

a reasonable approximation, the entire mass spectrum in minimal supergravity models is determined
by only five unknown parameters: m2

0, m1/2, A0, tan β, and Arg(µ), while in the simplest gauge-
mediated supersymmetry breaking models one can pick parameters Λ, Mmess, N5, 〈F 〉, tan β, and
Arg(µ). Both frameworks are highly predictive. Of course, it is easy to imagine that the essential
physics of supersymmetry breaking is not captured by either of these two scenarios in their minimal
forms. For example, the anomaly mediated contributions could play a role, perhaps in concert with
the gauge-mediation or Planck-scale mediation mechanisms.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [204]-[213],[194].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest

80

Typical mSUGRA Spectrum

Structure:

Principle Fine HyperFine
SU(3)c Charged SU(2)L Charged 3rd Generation

Heavier Heavier Lighter



mSugra and “Gaugino Mass Unification”
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Most models look like this

Diversity is whether squarks & Higgsinos are lighter than gluinos
and  sleptons are lighter than the winos
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The Phenomenological MSSM

m2
q̃,m

2
ũc ,m2

d̃c ,m
2
�̃
,m2

ẽc
5 for 1st 2 Generations
5 for 3rd Generations

mg̃,mW̃ ,mB̃ , µ 4 for *-ino masses

At, Ab, Aτ 3 for A-terms

m2
hu

,m2
hd

, Bµ 3-1 for Higgs Sector

Berger, Gainer, Hewett, Rizzo

The part of parameter space that was allowed
circa 1981

19 Dimensional Parameter Space
Challenging to explore in detail: 219 ~ 0.5 Million
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Theory of nature is a one parameter function, y=f(x), 

Can only do measurements of y near x=0 that we don’t know

A very complicated space to explore!
∞-dimensional

x( )
0

y = f(x)



Imagine a simpler world...
Theory of nature is a one parameter function, y=f(x), 

Can only do measurements of y near x=0 that we don’t know

A very complicated space to explore!
∞-dimensional

x( )
0

y = f(x)

In this world, the leading theory is f(x) = eα(x−x0)



Imagine a simpler world...
Theory of nature is a one parameter function, y=f(x), 

Can only do measurements of y near x=0 that we don’t know

A very complicated space to explore!
∞-dimensional

x( )
0

y = f(x)

In this world, the leading theory is f(x) = eα(x−x0)

Could design a measurement strategy to discover
f(x) �= 0, α, x0
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What happens if we’re wrong about

our theoretical assumption?
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our theoretical assumption?

f(x) = sinh(x) f(x) vanishes at 0

f(x) = cosh(x)− 1 Function & slope vanish at 0

f(x) = cos(x) Doesn’t grow asymptotically

f(x) = −eα(x−x0) f(x) is negative

Could enumerate all possibilities 
A better strategy

f(x) = a0 + a1x + a2x
2 + · · ·

Easy to identify special cases

Mr. Taylor



Not a cure-all
Still infinite dimensional

But there is some notion of simplicity

f(x)= -x6 + x12  less likely than  f(x)=1



Not a cure-all
Still infinite dimensional

But there is some notion of simplicity

f(x)= -x6 + x12  less likely than  f(x)=1

Assumes the function is continuous/differentiable 

f(x) = log(1 + x)
Radius of convergence problems

f(x) = Θ(x)

There could be technicalities:

f(x) =
∞�

n=0

an cos(bnπx)
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Approximation

a0, a1, a2

Experimental
Signature

Ansatz

eαx

Theory

f(x)

y

f(x) = All theories beyond the Standard Model
ex= mSUGRA

y = A typical LHC observable, e.g. Missing Energy

What is a Taylor Series?



Captures specific models 

Simplified Models

Easy to explore

Limits of specific theories

Not fully model independent, 
but greatly reduce model dependence

Removes superfluous model parameters

Only keep particles and couplings relevant for searches

Add in relevant modification to models (e.g. singlets)

Including ones that aren’t explicitly proposed

Masses, Cross Sections, Branching Ratios

A full Lagrangian description

(Effective Field Theories for Collider Physics)



Example Simplified Model
Direct Decays

g̃

χ̃

MASS

color octet majorana 
fermion (“Gluino”) 

neutral majorana 
fermion (“LSP”) 

Three-Body Decay

g̃
q̃

q q̄

χ0
1

q q̄

g̃ g̃g

f(x) = a0

(off-shell squark that is too heavy to be seen)



Directly Decaying Gluino 
Keep masses and total cross section free

mχ0mg̃ σ(pp→ g̃g̃X)

g̃
q

q̄
j

j

ET/χ0
g̃q̄

q
j

j

ET/ χ0 q̃∗ q̃∗

Typical signature is 4 jets plus missing energy
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Study one decay mode g̃ → qq̄χ̃0

g̃
�W

B̃
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h

Br = 100%

Sometimes 
this is the 

exact theory



Directly Decaying Gluino 
Study one decay mode g̃ → qq̄χ̃0
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Br = 100%

Sometimes 
this is the 

exact theory
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Other times
this is a

subdominant 
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New Spectra to Consider

LSP could have mass of 270 GeV
4 jets of 8 GeV

15 GeV of Missing Energy

Nearly impossible to see!

Imagine having a 300 GeV Gluino

mSUGRA would predict LSP is 50 GeV
4 jets of 90 GeV

130 GeV of Missing Energy

Hard to miss



Radiate off additional jet

q q̄

g̃ g̃g

j1

j2

j3

j4

g̃
g̃

B̃

B̃

j5
j1

j2

ET�
j3

Unbalances momentum of gluinos
Monojet signatures
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Figure 5: Measured (red line) and expected (dashed blue line) 95% CL exclusion contour at
NLO in the CMSSM (m0, m1/2) plane for tan β = 3, A0 = 0 and sign(µ) > 0. The measured
LO exclusion contour is shown as well (dot-dashed green line). The area below the curves is
excluded by this measurement. Exclusion limits obtained from previous experiments are pre-
sented as filled areas in the plot. Grey lines correspond to constant squark and gluino masses.
The plot also shows the two benchmark points LM0 and LM1 for comparison.

with the estimate from control samples in data. Here, conservatively large systematic uncer-
tainties have been assigned to the background estimates. The measurements are in agreement
with the expected contributions from standard model processes. Limits on the CMSSM param-
eters have been derived, and have been shown to improve significantly those set by previous
experiments.
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V. GLUINO EXCLUSION LIMITS

A. No Cascade Decays

For the remainder of the paper, we will discuss how model-independent jets + ET� searches
can be used to set limits on the parameters in a particular theory. We will focus specifically
on the case of pair-produced gluinos at the Tevatron and begin by considering the simplified
scenario of a direct decay to the bino. The expected number of jets depends on the relative
mass difference between the gluino and bino. When the mass difference is small, the decay
jets are very soft and initial-state radiation is important; in this limit, the monojet search
is best. When the mass difference is large, the decay jets are hard and well-defined, so
the multijet search is most effective. The dijet and threejet searches are important in the
transition between these two limits.

As an example, let us consider the model spectrum with a 340 GeV gluino decaying
directly into a 100 GeV bino. In this case, the gluino is heavy and its mass difference with
the bino is relatively large, so we expect the multijet search to be most effective. Table III
shows the differential cross section grids for the 1-4+ jet searches for this simulated signal
point. The colors indicate the significance of the signal over the limits presented in Table II;
the multijet search has the strongest excesses.

Previously [28], we obtained exclusion limits by optimizing the ET� and HT cuts, which
involves simulating each mass point beforehand to determine which cuts are most appropri-
ate. This is effectively like dealing with a 1× 1 grid, for which a 95% exclusion corresponds

Out[27]=
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FIG. 4: The 95% exclusion region for DO� at 4 fb−1 assuming 50% systematic error on background.

The exclusion region for a directly decaying gluino is shown in light blue; the worst case scenario

for the cascade decay is shown in dark blue. The dashed line represents the CMSSM points and

the “X” is the current DO� exclusion limit at 2 fb−1.
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Tevatron Reach

4 fb-1

2σ sensitivity

g̃ → B̃jj

g̃ → �Wjj → (B̃jj)jj

mg̃
>∼ 120 GeV

Alwall, Le, Lisanti, JW



The ATLAS with 70 nb-1

200 pb

300 pb

500 pb

1 nb

2 nb

100 pb

Tevatron

!prod  = 3!" NLO-QCD 

!prod  = !" NLO-QCD 

!prod  = 0.3 !" NLO-QCD 

!prod  = 0.1 !" NLO-QCD 

mSUGRA

g̃ → χqq̄

There could have been discoveries
mχ0mg̃ σ(pp→ g̃g̃X)

Alves, Izaguirre, JW



Going Forward into 2011
Want to ensure coverage isn’t an accident

4 Simplified Models:
2 Body Direct Decay 3 Body Direct Decay

1 Step Cascade Decay 2 Step Cascade Decay



Simplified Models
Direct Decays
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Simplified Models
One-Step Cascade Decays

g̃

χ̃

MASS

χ̃±

mχ̃± = mχ̃+ (mg̃ + mχ̃)

color octet majorana 
fermion (“Gluino”) 

neutral majorana 
fermion (“LSP”) 

electroweak majorana
fermion (“Wino”) 

g̃
q̃

W (∗)
q q̄

χ0
1χ2

3
4



Simplified Models
Two-Step Cascade Decays
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Multiple Search Regions
• find minimal set of search regions whose combined reach has 

universal coverage

for all masses and decay modes
for three luminosity scenarios: 10 pb-1, 100 pb-1, 1 fb-1

• Number of search regions depends on desired “Efficacy”

E(M,S) =
σlim(M,S)
σbest

lim (M)
M = Model
S = Search Region

≥ 1



Multiple Search Regions
• find minimal set of search regions whose combined reach has 

universal coverage

for all masses and decay modes
for three luminosity scenarios: 10 pb-1, 100 pb-1, 1 fb-1

• Number of search regions depends on desired “Efficacy”

E(M,S) =
σlim(M,S)
σbest

lim (M)
M = Model
S = Search Region

✦ 1.05         O( 30 search regions )
✦ 1.10         O( 16 search regions )
✦ 1.30         O( 6 search regions )
✦ 1.50         O( 4 search regions )

if E > Ecrit for all M

≥ 1



Multiple Search Regions

• 6 search regions necessary:

Dijet high MET

Trijet high MET

Multijet moderate MET

Multijet high MET

Multijet low MET

Multijet very high HT

ET� > 500 GeV, HT > 750 GeV

ET� > 450 GeV, HT > 500 GeV

ET� > 100 GeV, HT > 450 GeV

ET� > 150 GeV, HT > 950 GeV

ET� > 250 GeV, HT > 300 GeV

ET� > 350 GeV, HT > 600 GeV
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Multiple Search Regions



Designing Optimal Regions

• Choice of multiple search regions 
depends upon

• Not something a theorist should be 
designing too closely

• Scans are expensive for 
experiments,  providing 
benchmark theories saves effort

• backgrounds 
• detector efficiencies & acceptances
• how good is good enough
• etc

• We’ve done rough exploration of 
corners of parameter space looking 
for



List of Benchmark Models

• Chosen to maximize differences in 
how they appear in given searches

• Simple and easy to define 

• Consistent theories on their own

mχ± = mχ0 + x(mg̃ −mχ0)



200 400 600 800
0

200

400

600

800

mg
� �GeV�

m
Χ�GeV

�

one step cascade decay, x�1�2

200 400 600 800
0

200

400

600

800

mg
� �GeV�

m
Χ�GeV

�

one step cascade decay, x�3�4

200 400 600 800
0

200

400

600

800

mg
� �GeV�

m
Χ�GeV

�

one step cascade decay, x�1�4
200 400 600 800

0

200

400

600

800

mg
� �GeV�

m
Χ�GeV

�

three�body direct decay

200 400 600 800
0

200

400

600

800

mg
� �GeV�

m
Χ�GeV

�

two�body direct decay

200 400 600 800
0

200

400

600

800

mg
� �GeV�

m
Χ�GeV

�

two step cascade decay

50 fb

100 fb

500 fb

1 pb

2 pb

5 pb

10 pb

50 pb

100 pb

3 pb

500 pb

50 fb

100 fb

500 fb

1 pb

2 pb

5 pb

10 pb

50 pb

100 pb

3 pb

500 pb

50 fb

100 fb

500 fb

1 pb

2 pb

5 pb

10 pb

50 pb

100 pb

3 pb

500 pb

50 fb

100 fb

500 fb

1 pb

2 pb

5 pb

10 pb

50 pb

100 pb

3 pb

500 pb

50 fb

100 fb

500 fb

1 pb

2 pb

5 pb

10 pb

50 pb

100 pb

3 pb

500 pb

50 fb

100 fb

500 fb

1 pb

2 pb

5 pb

10 pb

50 pb

100 pb

3 pb

500 pb

 Expectations for
Full 2010 & 2011 Data Sets
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Future Work
Need to Expand Simplified Model Catalogue

Workshop on Topologies for Early LHC Searches
September 22 - 25, 2010 at SLAC

Over 100 Participants
Developed 50 Simplified Models

On June 4-5, 2010 ATLAS & CMS called
for more models to be searched

Over 100 participants, international presence

SLAC Topologies ’10
Organizers: Rouven Essig, ML, Philip Schuster, Tim Tait, Natalia Toro, Jay Wacker

An opportunity for the theory community to propose a set of ‘‘good’’ 
models to guide the search and characterization of new physics at the LHC 
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ATLAS & CMS are beginning to use in
preliminary proposals for upcoming analyses

http://LHCNewPhysics.org
Follow-up to the Workshop

ATLAS studying 10 Simplified Models from 0 in August
Changing their triggers

Now approaching a fully featured website with supplemental information:

Definitions of Models, Model files, 
LHE Files, Presentations,
Refereeing, Discussions

http://LHCNewPhysics.org
http://LHCNewPhysics.org

