

Searches for Lepton Flavour Violation and Lepton Number Violation in Charged Lepton Decays

Francesco Renga Paul Scherrer Institut & INFN on behalf of the MEG Collaboration

Flavour Physics and CP Violation 2012 – Hefei (China), May 21-25, 2012

Outline

- Theoretical aspects of Lepton Flavor Violation (LFV) and Lepton Number Violation (LNV) in μ and τ decays;
- Searches for LFV and LNV in τ decays;
- $\mu \rightarrow e \gamma$ search with the MEG experiment;
- Future perspectives.

LFV/LNV and New Physics

- LFV/LNV are a standard probe for New Physics (NP) beyond the Standard Model (SM):
 - unobservable rates in the SM;
 - naturally enhanced by NP;

LFV/LNV and New Physics

- LFV is naturally enhanced in many New Physics models;
- SUSY:
 - LFV arise through renormalization group running even if the theory is LF conserving at the high energy scale

SUSY (BR ~ $10^{-11} - 10^{-15}$)

- Extra dimensions
- Unparticle Physics (Aliev, Cornell, Gaur '07)
- LNV in models with Majorana v's

The μ and τ sectors

- Relative rate of LFV in μ and τ decays strongly depends on the flavor stucture of NP:

The μ and τ sectors

- Relative rate of LFV in μ and τ decays strongly depends on the flavor stucture of NP:

 10^{-12}

 10^{-1}

SUSY SU(5) with right-handed neutrino (*Hisano, Nagai, Paradisi, Shimizu '09*)

 10^{-10}

 $BR(\mu \rightarrow e\gamma)$

 $U_{e3} = 0.001$

 10^{-11}

 10^{-12}

 10^{-13}

The μ and τ sectors

• Another scenario (with $sin(\theta_{13}) \sim 0.15$)

LFV and dipole moments

 Strict relation of LFV and leptonic dipole moments in many NP models.

MSSM with large tanβ (Isidori, Mescia, Paradisi '07)

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$
$$\Delta a_{\mu} = a_{\mu} - a_{\mu}^{SM}$$

 $\mathbf{\Omega}$

τ LFV at the B-Factories

- $e^+e^- \rightarrow \tau^+\tau^-$:
 - B-Factories are also τ factories, $\sigma(\tau^+\tau^-) \sim \sigma(b\overline{b}) \sim 1nb$;
- Well established analysis techniques;
- 1 1 topology and 1 3 topology:
 - only one track is reconstructed from one τ (*tag* τ);
 - Signal τ is fully reconstructed (1 or 3 tracks + photons);
- Main backgrounds from $\tau \tau / \mu \mu$ (+ ISR),

$$e^+e^- \rightarrow \gamma^* \gamma^* e^+ e^-, e^+e^- \rightarrow q\bar{q}$$
:

- rejection through reconstructed τ mass M_{τ} and missing energy $\Delta E = E_{\tau}^{CM} - E_{beam}^{CM}$

τ LFV – well known results

Channel	Best 90% C.L. Limit [x 10 ⁻⁸]	Other 90% C.L. Limits [x 10 ⁻⁸]
$\tau^{+}\!$	3.3 (BaBar) PRL 104, 021802 (2010)	12 (Belle) PLB 666, 16 (2008)
$\tau^+ \to \mu^+ ~\gamma$	4.4 (BaBar) PRL 104, 021802 (2010)	4.5 (Belle) PLB 666, 16 (2008)
$\tau^+ \to e^+ \; e^+ \; e^-$	2.7 (Belle) PLB 687, 139 (2010)	3.4 (BaBar) PRD 81, 111101 (2010)
$ au^+ ightarrow {e^+}~\mu^+~\mu^-$	2.7 (Belle) ibidem	4.6 (BaBar) ibidem
$\tau^+ \to e^{\scriptscriptstyle -} \; \mu^+ \; \mu^+$	1.7 (Belle) ibidem	2.8 (BaBar) ibidem
$\tau^+ \rightarrow \mu^+ \ e^+ \ e^-$	1.8 (Belle) ibidem	3.7 (BaBar) ibidem
$\tau^+ \to \mu^{-} \; e^+ \; e^+$	1.5 (Belle) ibidem	2.2 (BaBar) ibidem
$ au^+ ightarrow \mu^+ \ \mu^+ \ \mu^-$	2.1 (Belle) ibidem	4.0 (BaBar) ibidem

$\tau \rightarrow l h (h = P^0, V^0)$

•
$$\tau \rightarrow I P^{0}$$
, $P^{0} \rightarrow \gamma \gamma$, $\pi^{+} \pi^{-} (+ \gamma' S)$

-
$$P^0 = \pi^0, \eta, \eta', K_s^0$$

- 1 – 1 or 1 – 3 topology

• $\tau \rightarrow I \ V^{0}, \ V^{0} \rightarrow \pi^{+} \ \pi^{-}, \ K^{+} \ K^{-} \ (+ \ \gamma' s)$

-
$$V^{0} = \rho^{0}, \phi, \omega, K^{*0}$$

1 – 3 topology

$$\begin{array}{cccc} \eta \rightarrow \gamma \gamma & \rho^{0} \rightarrow \pi \pi \\ \eta \rightarrow \pi \pi \pi^{0} & \varphi \rightarrow K K \\ \eta' \rightarrow \pi \pi \eta & \omega \rightarrow \pi \pi \pi^{0} \\ \eta' \rightarrow \rho^{0} \gamma & K^{*0} \rightarrow K \pi \\ K_{c}^{0} \rightarrow \pi \pi \end{array}$$

• Relevant backgrounds from specific physics processes (e.g. $\tau \rightarrow \pi \omega \nu$ with $\pi \rightarrow$ lepton mis-ID in the $\tau \rightarrow I \omega$ channel).

$\tau \rightarrow l h (h = P^0, V^0)$

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{\rm obs}$	s_{90}	$\mathcal{B}_{\mathrm{obs}}~(imes 10^{-8})$
$ au^- ightarrow \mu^- ho^0$	7.09	1.48 ± 0.35	5.3	0	1.34	1.2
$\tau^- \to e^- \rho^0$	7.58	0.29 ± 0.15	5.4	0	2.17	1.8
$\tau^- \to \mu^- \phi$	3.21	0.06 ± 0.06	5.8	1	4.24	8.4
$\tau^- \to e^- \phi$	4.18	0.47 ± 0.19	5.9	0	2.02	3.1
$\tau^- \to \mu^- \omega$	2.38	0.72 ± 0.18	6.1	0	1.76	4.7
$\tau^- \to e^- \omega$	2.92	0.30 ± 0.14	6.2	0	2.19	4.8
$\tau^- \to \mu^- K^{*0}$	3.39	0.53 ± 0.20	5.5	1	3.81	7.2
$\tau^- \to e^- K^{*0}$	4.37	0.29 ± 0.14	5.6	0	2.17	3.2
$\tau^- \to \mu^- \bar{K}^{*0}$	3.60	0.45 ± 0.17	5.5	1	3.90	7.0
$\tau^- \to e^- \bar{K}^{*0}$	4.41	0.08 ± 0.08	5.6	0	2.34	3.4

$\tau \rightarrow$	Eff.	N _{BG} exp UL	(x10 ⁻⁸)	τ→	Eff.	N _{BG} ^{exp}	UL (x10-8)
μη(→γγ)	8. 2%	0.63±0.37	3.6	μη'(→ππη)	8.1%	0.00+0.16-0.00	10.0
μη(→πππ ⁰)	6.9%	0.23±0.23	8.6	μη' (→ρ⁰γ)	6. 2%	0.59±0.41	6.6
$\mu\eta$ (comb.)			2.3	$\mu\eta$ ' (comb.)			3.8
e η(→γγ)	7.0%	0.66±0.38	8. 2	e η' (→ππη)	7.3%	0.63±0.45	9.4
$e\eta(\rightarrow\pi\pi\pi^0)$	6. 3%	0.69±0.40	8.1	e η' (→ρ ⁰ γ)	7.5%	0.29±0.29	6.8
eη(comb.)			4.4	eη'(comb.)			3.6
μπ ⁰ (→γγ)	4. 2%	0.64±0.32	2.7	e π ⁰ (→γγ)	4. 7%	0.89±0.40	2. 2

901 fb⁻¹, K.Hayasaka (ICHEP 2010)

469 fb⁻¹, PRD 79 (2009) 012004

$\tau \rightarrow l h (h = P^0, V^0)$

Yukawa couplings

$\tau \rightarrow l h h' (h, h' = \pi^{\pm}, K^{\pm})$

- 14 modes (8 LFV $\tau^- \rightarrow l^-h^+h^{\prime-}$, 6 LNV $\tau^- \rightarrow l^+h^-h^{\prime-}$)
- Similar analysis techniques as in $\tau \rightarrow$ l h;
- Relevant background in $\tau \rightarrow \mu K \pi$ from $\tau \rightarrow \pi \pi \pi \nu$ with π mis-ID:
 - require M(3π) > 1.52 GeV/c² when all tracks are assigned a π mass;

$\tau \rightarrow l h h' (h, h' = \pi^{\pm}, K^{\pm})$

• 14 mod	es (8 E\/	<u>→ l-h+h'- 6 l</u>	<u>NIV/ ~-</u>	<u>→ l+h-h'</u>	<u>-\ +</u>	data (854 fb ⁻¹) continuum MC
• Similar	Mode	ε (%) $N_{\rm BG}$	$\sigma_{\rm syst}$ (%) 1	$N_{\rm obs}$ s_{90}	$B(10^{-8})$	Kπ MC
• Sinnar	$ au^- o \mu^- \pi^+ \pi^-$	5.83 0.63 ± 0.23	5.3	0 1.87	2.1	
Relevar	$ au^- o \mu^+ \pi^- \pi^-$	$6.55 0.33 \pm 0.16$	5.3	1 4.02	3.9	
	$ au^- ightarrow e^- \pi^+ \pi^-$	5.45 0.55 ± 0.23	5.4	0 1.94	2.3	↓ ↓ ↓ ⊨
$ au ightarrow \pi\pi$	$ au^- ightarrow e^+ \pi^- \pi^-$	6.56 0.37 ± 0.18	5.4	0 2.10	2.0	┥┟╇╖╉
	$\tau^- ightarrow \mu^- K^+ K$	$-2.85\ 0.51\pm0.18$	5.9	0 1.97	4.4	┌ ╓╵╹┝╹┝
– requi	$ au^- ightarrow \mu^+ K^- K$	$-2.98\ 0.25\pm0.13$	5.9	0 2.21	4.7	
track	$ au^- ightarrow e^- K^+ K^-$	$-4.29\ 0.17\pm0.10$	6.0	0 2.28	3.4	╤┚╍┚╹╚
	$\tau^- \to e^+ K^- K^-$	$-4.64\ 0.06\pm0.06$	6.0	0 2.38	3.3	1.5
	$ au^- o \mu^- \pi^+ K^-$	$-2.72\ 0.72\pm0.27$	5.6	1 3.65	8.6	M(3π) [GeV/c ²]
<u> </u>	$\tau^- ightarrow e^- \pi^+ K^-$	$3.97 0.18 \pm 0.13$	5.7	0 2.27	3.7	
$\frac{2}{6}$ 0.2 - (a) $\tau \rightarrow \mu$	$ au^- ightarrow \mu^- K^+ \pi^-$	$-2.62\ 0.64\pm0.23$	5.6	0 1.86	4.5	(e) τ →μ π K
₹	$\tau^- ightarrow e^- K^+ \pi^-$	$4.07 \ \ 0.55 \pm 0.31$	5.7	0 1.97	3.1	
° 🕑	$ au^- o \mu^+ K^- \pi^-$	$-2.55\ 0.56\pm 0.21$	5.6	0 1.93	4.8	<u>C</u>
-0.2	$\tau^- \to e^+ K^- \pi^-$	4.00 0.46 ± 0.21	5.7	0 2.02	3.2	
-0.4 1.7 1	.8 -0.4	.7 1.8	1.75	1.8	. – L	1.7 1.8
M _µ	un (GeV/c²)	M _{μππ} (GeV/c ²)		M _{µKK} (GeV/c ²)		M _{μπK} (GeV/c ²)

$\tau \rightarrow \Lambda h (h = \pi^{\pm}, K^{\pm})$

- Theoretical interest (BNV with higher generations Hou, Nagashima, Soddu '05)
- 4 modes (B–L cons. $\tau^{-} \rightarrow \overline{\Lambda} h^{-}$, B-L viol. $\tau^{-} \rightarrow \Lambda h^{-}$)
- Relevant backgrounds from $q\overline{q}$ and $K_{s}^{0} \rightarrow \Lambda$ mis-ID

$\tau \rightarrow \Lambda h (h = \pi^{\pm}, K^{\pm})$

854 fb⁻¹, K.Hayasaka (EPS 2011)

 $\begin{array}{l} \textbf{B} - \textbf{L cons.} \\ BR(\tau^{-} \rightarrow \overline{\Lambda} \ \pi^{-}) < 2.8 \ x \ 10^{-8} \\ BR(\tau^{-} \rightarrow \overline{\Lambda} \ \text{K}^{-}) < 3.1 \ x \ 10^{-8} \end{array}$ $\begin{array}{l} \textbf{B} - \textbf{L viol.} \\ BR(\tau^{-} \rightarrow \Lambda \ \pi^{-}) < 3.0 \ x \ 10^{-8} \\ BR(\tau^{-} \rightarrow \Lambda \ \text{K}^{-}) < 4.2 \ x \ 10^{-8} \end{array}$

remaining background dominated by $\tau \rightarrow a_1(1260) v$ and $q\bar{q}$

τ decays at LHC

- LHC is also entering the game:
 - @ LHCb, $\tau 's$ from $B_{(s)}$ and D_s decays, incl. σ ~ 80 μb
- First result on $\tau \rightarrow \mu \mu \mu$ just presented here by P. Seyfert:
 - BR($\tau \rightarrow \mu \mu \mu$) < 6.3 x 10⁻⁸ @ 90% C.L.
 - Competitive with B-Factories

• Searches for $\tau \rightarrow \mu \phi$, $\tau \rightarrow \mu hh'$ are also feasible with similar sensitivities.

The MEG experiment

- A search for $\mu \rightarrow e \gamma$ with the most intense DC muon beam of the world (3 x 10⁷ μ /s @ PSI, Switzerland);
- Running since 2008.

Francesco Renga - Searches for LFV and LNV

Signal & Background

- Signal:
 - monochromatic (52.8 MeV), back-to-back e⁺ γ produced at the same time;
- Backgrounds:
 - accidental time coincidence of e⁺ & γ from different μ decays
 - radiative muon decays
- Likelihood analysis of 5 discriminating variables $(E_e, E_\gamma, \theta_{e\gamma}, \phi_{e\gamma}, T_{e\gamma})$:
 - year-by-year and event-by-event PDFs.

20

Detector performances

New calibration tools

- We recently enlarged our calibration toolbox:
 - Pulsed neutron generator to produce 9 MeV γ calibration line from neutron capture in Ni
 - Dedicated runs with monochromatic positron beams
 - Improved alignment procedures for the spectrometer

Definition of PDFs (I)

- Accidental background PDFs are fully defined from data sidebands:
 - very solid determination of the (largely) dominant background;
- Signal and radiative decay PDFs by combining results of calibrations:
 - positron angle & vertex
 PDFs from the comparison
 of different segments of the
 same track (two turns).

Definition of PDFs (II)

CORRELATIONS

- We account for correlations among positron variables and direction-dependent positron resolutions:
 - expected and well understood geometrical effects;
 - mostly measured on data from two turn tracks.

Sensitivity

 From pseudo-experiments generated according to the PDFs (Toy MC) and including systematics.

Results (2009 - 2010)

Results (2009 - 2010)

Results (2009 - 2010)

2011 run and perspectives

- ~ 19 x 10¹² stopped μ during 2011 (~ 1.1x the 2009 + 2010 statistics);
- Analysis on going:
 - exp. limit ~ 10⁻¹²
- 2012 run planned to start in a few weeks;

 A major upgrade (new tracker, improved photon detectors for the LXe calorimeter, etc.) is under study.

Future perspectives

- Super Flavour Factory projects aim to set limits ~ 10^{-9} on τ LFV;
- Two R&D to search for $\mu \rightarrow e$ conversion in the interaction with nuclei at a level of < 10^{-16} :

- An R&D is on going for $\mu \rightarrow e \; e \; e \; at$ PSI;
- A major upgrade of the MEG experiment could allow to set a limit of ~ 5 x 10^{-14} on $\mu \to e~\gamma$:
 - competitive with initial phase of $\mu \to e$ conversion experiments, in a shorter time scale.

Summary

- Limits on τ LFV/LNV reached ~ few 10⁻⁸ at the B-Factories:
 - LHCb just starts to be competitive;
- $\mu \rightarrow e \gamma$ search at MEG set a limit of 2.4 x 10⁻¹²:
 - expect ~ 6 x 10^{-13} at the end of the experiment lifetime;
- Present limits already severely constrain NP;
- A number of future experiments have been proposed to significantly improve these sensitivities.

LFV Timeline

Do not stop searching!

Backup

Profile Likelihood Ratio (MEG)

Systematics

- Systematic uncertainties are included in the calculation of the upper limit (2% effect on the UL);
- An idea from $\Delta log(LR_p)$ at N = N_{gen} in toy MC: $\Delta log(LR_p)$

Center of $\theta_{e\gamma}$ and $\phi_{e\gamma}$	0.18	
Positron correlations		
Normalization		
E_{γ} scale	0.07	
$E_{\rm e}$ bias, core and tail	0.06	
$t_{\rm e\gamma}$ center		
E_{γ} BG shape		
E_{γ} signal shape	0.03	
Positron angle resolutions $(heta_{ m e},\phi_{ m e},z_{ m e},y_{ m e})$		
γ angle resolution $(u_{\gamma}, v_{\gamma}, w_{\gamma})$		
$E_{\rm e}$ BG shape		
$E_{\rm e}$ signal shape	0.01	

Effective cLFV lagrangian

$$\mathcal{L}_{CLFV} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa+1)\Lambda^2} \bar{\mu}_R \gamma_{\mu} e_L \bar{e} \gamma^{\mu} e_L \bar{$$

Charge Exchange Calibration

ENERGY CALIBRATION

 $\pi^{\text{-}}$ + $p \rightarrow \pi^{\text{0}}$ + n, $\pi^{\text{0}} \rightarrow \gamma ~\gamma$

• Monochromatic photons can be obtained by selecting a fixed opening angle between the two photons.

