New ideas and directions in flavor physics/CP violation

Amarjit Soni BNL, HET (<u>adlersoni@gmail.com</u>) FPCP 2012, Hefei, China

Daunting task of a BSM theorist

- # of BSMs ~ [# of theorists]^{Huge#} !!
- Safer to cling closer to experiments and take cue from there => Rephrase my charge to

Possible new physics opportunities in the flavor sector

Somewhat optimistic interpretation of (some) existing deviations > 2 σ

HINTS & THENCE

- Outlook for possible resolution
- NP in Flavor needs only one to survive
- Taking these seriously, candidate NP scenarios at work Flavor, FPCP12; A. Soni

(g -2)_μ & SM the complete SM prediction is given by

 $a_{\mu}^{SM} = 116591834(2)(41)(26) \times 10^{-11}$

whereas the current experimentally measured value is [8] BNL E 82 $a_{\mu}^{exp} = 116592089(54)(33) \times 10^{-11}$. 04; 04;

The SM prediction, therefore, differs from the the experimentally measured value by (see also [9, 10]):

 $a_{\mu}^{\text{new}} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (255 \pm 80) \cdot 10^{-11}, \quad \text{NB} \cdot 2.55 \pm 80, \quad \text{NB} \cdot$

Glorious successes & simmering limitations

ALL EXPERIMENTAL DATA MUST REQUIRE ONLY UNIQUE ρ , η

Courtesy: Tom Browder

Critical Role of the B factories in the verification of the KM hypothesis was recognized and cited by the Nobel Foundation

A single irreducible phase in the weak interaction matrix accounts for most of the CPV observed in kaons and B's.

CP violating effects in the B sector are O(1) rather than O(10^{-3}) as in the kaon system. 8

Role of the lattice weak matrix elements in the rise & in possible demise of CKM $\begin{bmatrix} C \cdot AIDA & E -K \end{bmatrix}$

- B_{K} is indispensible to demonstrate that the CKM phase SIMULTANEOUSLY accounts for Kaon CP as well as B-CP.
- . Argueably lattice WME role in the Nobel Prize is as essential as BFs. Actually there is much more to it then even that. $B_{K} \equiv \langle k | (S \, M \, K) / S \, g_{K}^{2} \, M_{K}^{2}$

Lunghi+AS,arXiv.0707.0212

(Sin 2 β = 0.78+-.04)

Figure 1: Unitarity triangle fit in the SM. The constraints from $|V_{ub}/V_{cb}|$, ε_K , $\Delta M_{B_s}/\Delta M_{B_d}$ are included in the fit; the region allowed by $a_{\psi K}$ is superimposed.

Continuing saga of Vub

- For past many years exclusive & inclusive show discrepancy (Latest; gotten worse) Exc ~ $(29.7 + -3.1)X10^{-4}$ Inc ~ $(40.1+-2.7+-4.0)X10^{-4}$
- Exc ~ (29.7 +-3.1)X10⁻⁴
- Inc ~ (40.1+-2.7+-4.0)X10⁻⁴

-> Let's try NOT use Vub: initiated in '08 (EL&AS'08)...Not just for the above reason DNLY BECAME VIABLE DUE TO BETTER NP in Flavor, FPCP12; A. Soni SIGNIFICANT BETTER D.

2.1-2.7 σ - deviation from the directly measured values of sin 2 β requires careful follow-up

2010 UPDATE

 \hat{B}_{K}

14

Average the four 2+1 flavor calculations presented

Except for BMW, all are preliminary, although all groups have recently published B_K results from earlier datasets, so preliminary work should be fairly reliable.

See also recent summary by FLAG working group of FLAVIANET (arXiv:1011.4408) They quote $B_{K}^{\text{Playor}} = 0.738(20)^{4}$ for $N_{f} = 2+1$ 15

Inputs: S(Bd-> ψ K), ϵ K, Δ Ms, Δ Md, Vcb, γ

No semi-leptonic input, neither Vub or Vcb Lunghi + AS PRL 2010

- The other hint is that b-> s penguin transitions have a non-vanishing BSM phase.
- Cleanest modes (eta' Ks, phi Ks) seem to show smaller value ~0.59 – 0.56
- Central value for several other modes is smaller than 0.68 [and of course practically all are well below the theory prediction ~0.85]
 Note sin 42 deg = 0.67 sin 35 deg = 0.59
 NEED TO TARGET
 such small deviation

P. Clarke [LHCb Collab] update @ EWMoriond 2012

Used a simultaneous fit to both datasets, taking all common parameters and correlations into account.

Used largest syst. error.

 $\phi_s = -0.002 \pm 0.083$ (stat.) ± 0.027 (syst.) rad

4 0.2 rad

INF III FIAVUI, FFUF 12, A. JUIII

Main Conclusion on B CP anomalies

- Measured value of sin2 beta via S(ψKs) is smaller than SM expectations by ~3.3 sigma
- Also $\triangle ACP K\pi$ problem • ALSO Simappenguin Smalla that from $(4'K_3)$ the Will assume this is HINT for NP (later)

RECENT CP STUDIES IN D DECAYS C. M. GROVAU

Recent results from LHCb, CDF LHCL $\Delta A_{CP}^{\text{dir}} \equiv A_{CP}^{\text{dir}}(K^+K^-) - A_{CP}^{\text{dir}}(\pi^+\pi^-) = -(0.82 \pm 0.21 \pm 0.11)\%$ $U \text{Spin} \rightarrow A_{CP}^{dir}(K^+K^-) \simeq -A_{CP}^{dir}(\pi^+\pi^-)$ $A_{\rm CP}(K^+K^-) = (-0.24 \pm 0.22 \pm 0.09)\%$ CDF $A_{\rm CP}(\pi^+\pi^-) = (+0.22 \pm 0.24 \pm 0.11)\%$ $\Delta A_{CP}^{\rm dir} = (-0.645 \pm 0.180)\%$

Peek @ PDG: old results BR $[D^0 \to K^- \pi^+] = (3.949 \pm 0.023 \pm 0.040 \pm 0.025)\%$, BR[$D^0 \to \pi^+\pi^-$] = (0.1425 ± 0.0019 ± 0.0018 ± 0.0014)%, $BR[D^0 \to K^+K^-] = (0.3941 \pm 0.0038 \pm 0.0050 \pm 0.0024)\%,$ $\frac{\mathrm{BR}[D^0 \to K^+ \pi^-]}{\mathrm{BR}[D^0 \to K^- \pi^+]} = (0.331 \pm 0.008)\%,$ $\begin{aligned} \text{obs}_1 &\equiv \frac{\text{BR}[D^0 \to K^+ K^-] / |\vec{p}_K|}{\text{BR}[D^0 \to \pi^+ \pi^-] / |\vec{p}_\pi|} \simeq 3.22 \pm 0.09 \\ \text{obs}_2 &\equiv \frac{\text{Br}[D^0 \to K^- \pi^+] / |\vec{p}_{\pi K}|}{\text{Br}[D^0 \to K^+ K^-] / |\vec{p}_K|} \,\lambda^2 \simeq 0.47 \pm 0.01 \,, \end{aligned}$ obs₃ $\equiv \frac{\text{Br}[D^0 \to K^+ \pi^-]}{\text{Br}[D^0 \to K^- \pi^+]} \lambda^{-4} \simeq 1.28 \pm 0.03$, » USpin Gady Drohen NP in Flavor, FPCP12; A. Soni

EXACT U-SPIN LIMIT

$$\begin{split} H_{\rm eff}(c \to us\bar{d}) &= -(V_{cs}^*V_{ud}) H_{U=1}^{(U_3=-1)}, \\ H_{\rm eff}(c \to uq\bar{q}) &= \left(\frac{V_{cd}^*V_{ud} - V_{cs}^*V_{us}}{\sqrt{2}}\right) H_{U=1}^{(U_3=0)} + (V_{cd}^*V_{ud} + V_{cs}^*V_{us}) H_{U=0}, \\ H_{\rm eff}(c \to ud\bar{s}) &= (V_{cd}^*V_{us}) H_{U=1}^{(U_3=+1)}. \\ & \lambda \in V_{cq} \quad \forall \nu_{uq} \quad q \in \lambda, S \\ \mathcal{A}[D^0 \to K^-\pi^+] &= 2 V_{cs}^*V_{ud} B_{U=1}, \quad g \in \lambda, S \\ \mathcal{A}[D^0 \to \pi^+\pi^-] &= (\lambda_d + \lambda_s) A_{U=0} + (\lambda_d - \lambda_s) B_{U=1}, \\ \mathcal{A}[D^0 \to K^+K^-] &= (\lambda_d + \lambda_s) A_{U=0} - (\lambda_d - \lambda_s) B_{U=1}, \\ \mathcal{A}[D^0 \to K^+\pi^-] &= 2 V_{cd}^*V_{us} B_{U=1}, \quad g \in \lambda, S \end{split}$$

Taking U-spin breaking into a/c

$$\begin{split} \mathcal{A}[D^{0} \to K^{-}\pi^{+}] &\equiv 2V_{cs}^{*}V_{ud} \left(B_{U=1} - \Delta B_{U=1}^{\prime}\right) = 2V_{cs}^{*}V_{ud} B_{U=1} \left[1 - r_{1}^{\prime} e^{i\phi_{1}^{\prime}}\right], \\ \mathcal{A}[D^{0} \to \pi^{+}\pi^{-}] &= (\lambda_{d} + \lambda_{s}) \left(A_{U=0} + \Delta B_{U=1}\right) + (\lambda_{d} - \lambda_{s}) \left(B_{U=1} + \Delta A_{U=0}\right) \\ &= B_{U=1} \left[\left(\lambda_{d} + \lambda_{s}\right) \left(r e^{i\phi} + r_{1} e^{i\phi_{1}}\right) + \left(\lambda_{d} - \lambda_{s}\right) \left(1 + r_{0} e^{i\phi_{0}}\right) \right], \\ \mathcal{A}[D^{0} \to K^{+}K^{-}] &= (\lambda_{d} + \lambda_{s}) \left(A_{U=0} - \Delta B_{U=1}\right) - (\lambda_{d} - \lambda_{s}) \left(B_{U=1} - \Delta A_{U=0}\right) \\ &= B_{U=1} \left[\left(\lambda_{d} + \lambda_{s}\right) \left(r e^{i\phi} - r_{1} e^{i\phi_{1}}\right) - \left(\lambda_{d} - \lambda_{s}\right) \left(1 - r_{0} e^{i\phi_{0}}\right) \right], \\ \mathcal{A}[D^{0} \to K^{+}\pi^{-}] &= 2V_{cd}^{*}V_{us} \left(B_{U=1} + \Delta B_{U=1}^{\prime}\right) = 2V_{cd}^{*}V_{us} B_{U=1} \left[1 + r_{1}^{\prime} e^{i\phi_{1}} \right]. \end{split}$$

NP in Flavor, FPCP12; A. Soni

29

Conclusion on Recent D-CP results

- Plausible contribution originates from SM
- Part from NP cannot be ruled out
- Unless true result is , for sure, 1% or more , not a compelling sign of new physics
- theory estimates plagued by large hadronic (non-perturbative) uncertainties; NO RIGOUROUS METHOD IN SIGHT; LONG-TERM WORRY => Ghost of ε '/ε
- More exptal input crucial & could change SM vs NP; see arXiv:1202.3795 for suggested modes

Outlook for future (~5 years) for resolution of anomalies

- LatticeBG/Q's arrived late 2011...
 Computing power enhanced factor
 O(20-50) more compared to past 5-7 years
- SUPER KEK-B O(20- 50) X BELLE/BABAR
- S(LHCb)~10 X LHCb

OPTIMISTIC THAT A BSM CP-odd PHASE will be seen

IMPLICATIONS of Hints From B,D-CP studies

Assume now problems with CKM-SM are serious

• What is the most interesting theoretical scenario for BSM?

WARPED EXTRA-DIMENSION

• What is the simplest scenario ...?

4th generation

NP in Flavor, FPCP12; A. Soni

LINKED

DUALITY

DUF

Figure 1: Warped geometry with flavor from fermion localization. The Higgs field resides on the TeV-brane. The size of the extra dimension is $\pi r_c \sim M_P^{-1}$.

Simultaneous resolution to hierarchy and flavor puzzles

Fermion "geography" (localization) naturally explains:

Grossman&Neubert; Gherghetta&Pomarol; DavoudiasI, Hewett & Rizzo

- Why they are light (or heavy)
- FCNC for light quarks are severely suppressed
- RS-GIM MECHANISM (Agashe, Perez, AS'04) flavor changing transitions though at the *tree level* (resulting from interaction to mass basis)are suppressed roughly to the same level as loop in SM
- O(1) CP omnipresent;....in fact for neutron a (mild) CP problem
- Most flavor violations are driven by the top quark

-> ENHANCED t-> cZ, (alsoD⁰)....A VERY IMPORTANT "GENERIC" PREDICTION..Agashe, Perez, AS'04;06 $K-\overline{K}$: $|0^3$ TeV $-\sqrt{10}$ $\int eV$ (RS)

EXTENSIVE RECENT STUDIES by BURAS et al and NEUBERT et al
PROS & Cons

 The possibility to simultaneously address
 EW-PI and EW-FI puzzles renders the basic warp idea extremely appealing

BUT

- Specific model(s) that can be used to make precise quantitative predictions are not yet there
- Therefore, SEEK GENERIC CLUES & TARGETS

WARPET) SPACE: THEORY of Flavor Gold-mines @ H&L energies

- LHC:G->Z(II) Z(I'I'), WW
- LHC et al: t \bar t due (G,g,Z..)_{KK...}BOOSTED TOPS
- LHC: Top polarization, FB-asym expected
- LHC: t-> c Z.....
- t-edm
- N-edm

- PRECISE Quantitative predictions de fficult at present
- D⁰ mixing & CP (dir & TD)
- B_S (CP) ->ψφ,ψ η', φφ....
- B_d -> (φ,η'....)K_S, γ K^{*}TDCP NP in Flavor, FPCP12; A. Soni

One Very Impotent Reparcussion of RS.

Effective Lagrangian from WED

$$\mathcal{L}_{FC}^{t} \ni \left(g_{1}\bar{t_{R}}\gamma_{\mu}c_{R} + g_{2}\bar{t_{L}}\gamma_{\mu}c_{L}\right)Z^{\mu}g_{Z}$$
with
$$g_{1,2} \sim \left[5 \cdot 10^{-3}\frac{(U_{R})_{23}}{0.1}, 4 \cdot 10^{-4}\frac{(U_{L})_{23}}{0.04}\right] \left(\frac{3 \text{ TeV}}{m_{KK}}\right)^{2}$$

$$\mathcal{L}_{FC} \Rightarrow \left[5 \cdot 10^{-3}\frac{(U_{R})_{23}}{0.1}, 4 \cdot 10^{-4}\frac{(U_{L})_{23}}{0.04}\right] \left(\frac{3 \text{ TeV}}{m_{KK}}\right)^{2}$$

$$\mathcal{L}_{FC} \Rightarrow \left[5 \cdot 10^{-3}\frac{(U_{R})_{23}}{0.1}, 4 \cdot 10^{-4}\frac{(U_{L})_{23}}{0.04}\right] \left(\frac{3 \text{ TeV}}{m_{KK}}\right)^{2}$$

$$\mathcal{L}_{FC} \Rightarrow \left[5 \cdot 10^{-3}\frac{(U_{R})_{23}}{0.1}, 4 \cdot 10^{-4}\frac{(U_{L})_{23}}{0.04}\right] \left(\frac{3 \text{ TeV}}{m_{KK}}\right)^{2}$$

Experimental signals @ the LHC

$$BR(t \to cZ) \sim 10^{-5} \left(\frac{3 \text{ TeV}}{m_{KK}}\right)^4 \left(\frac{(U_R)_{23}}{0.1}\right)^2$$

At the LHC expect 10⁸ top pairs so should be accessible. Specifically with 100 fb⁻¹ ,upper limit on BR(t->cZ)~10⁻⁵ is feasible (ATLAS) With enough statistics angular analysis would also be very informative. WED predicts predominantly RH couplings.

Though RS represents an extremely interesting framework for a theory of flavor, an explicit consruction is still lacking...generically expect a zoo of new particles (graviton, Z',W'....) with masses > ~ 3 TeV, except for a light scalar (radion) should be considerably lighter 3 TeV may be tob optimistic. Wishful Thinking due MP in Flavor, FPEP12; A. Soni Thinking due Lie Mengy 42

LHC reach for the Little Z' via the clean dilepton channel (Davoudiasl, Gopalakrishna and A.S. arXiv:0908.1131)

• \mathcal{L}_5 : $\int L dt$ for 5σ signal (\geq 3 events) in $pp \rightarrow \ell^+ \ell^-$ ($\ell = e \text{ or } \mu$).

• For $kr_c \pi \approx 7$: $M_{Z'} \approx 2(3)$ TeV at $\sqrt{s} = 10(14)$ TeV with 1(4) fb⁻¹. • $kr_c \pi \approx 35$ (RS), any channel: $M_{Z'} \approx 3$ TeV, $\sqrt{s} = 14$ TeV, <u>300 fb⁻¹</u>. Agashe *et al.*, 2007

INF III FIAVUI, FFUF 12, A. JUIII

Tevatron & LHC Reach for the Radion

KK-Particle Masses

$$\int_{J} (x_{\infty}) = 0$$
(18)

where for gauge fields $x_n = 2.45, 5.56, 8.70, ...$ and for the graviton $x_n^G = 3.83, 7.02, 10.17, ...$ $EWPT \Rightarrow M_{KK} Z 3 TeV$ Agashe DMS 03 $M_G \sim 1.6 M_{glu}, M_{KF} 1.5 M_{glu}$ $Z', W' \sim M_{glu}$

Prospects for Direct Verifiction of a warped nature

Davoudiasl, Rizzo, AS,'07

GOLD-Plated G>22 ZBR Not EVENTS/50 GeV/1 ab ⁻¹ ²01 ¹⁰ ¹⁰ 50 4000 4500 5500 5000 G->WW More Senstive^Mzz (GeV)

Associated Production of PAIR of KK Fermions

FIG. 2: Same as the last figure but now for different values of \sqrt{s} and taking the first gluon KK and fermion KK masses to be degenerate at 3 TeV. From bottom to top the histograms correspond to $\sqrt{s} = 14, 21, 28$ and 60 TeV, respectively.

"Direct verification" (i.e. KK-graviton and/or KKfermion) at LHC will be very difficult unless we can learn to lower m_{KK} appreciably

Motivation [1] for a 4th generation

- Seen 3; why not 4?
- Enhanced prospects for DEWSB
- [Holdom('86); Bardeen et al ('90); Hung & Isidori('97); Hung & Xiong('11)].....
- Enhanced prospects for baryogenesis
 [Jarlskog & Stora('88); Branco et al('98); Hou('08)]

Motivation [II]

- NFC: built in.....Recall this is a very serious problem for almost all BSMs
- Cannot be just simple SM4: DM link? [See e.g. Volovik('03); Lee, Liu & AS ('11)]
- Readily accounts for B-CP-anomalies [A.S et al ('08; '10); Buras et al ('10)]
- Accounts also for AFB(tt) [DavoudiasI,McElmurry & A S]

Cannot be simple SM4

- Even if a 4th generation exists it is unlikely to be a simple replica of SM3:
- Neutrino mass provides a strong clue
- DM possibility and baryogenesis both strongly suggest 4G not in SM4
- Highly implausible that heavy quarks will not be used for DEWSB.....One Higgs tends to be heavy in these models

4G2HDM:LEET for **DEWSB**

[Bar-Shalom,Nandi, A.S '11, arXiv:1105.6095] see also He & Valencia: arXiv:1108:0222

- 2 Higgs doublet model for the 4th; 2nd doublet with v2/v1 >> 1 couples only to 4th gen
- FCNC only among 3rd and 4th gen.t'<->t
- Drastic modifications to t', b' search strategies; see Bar-Shalom,Eilam & Geller 12
- t'->t h, b h+ very large BR, similarly for b'
- Can account for tt FB asymmetry

Calso N. Chemor H. J. He 1202.3072

t' decay pattern

 $m_{t'}$ =500 GeV, tan β =1, ϵ_{t} = $m_{t'}m_{t'}$

4G2HDM: significantly alleviates EWPC on 4G

Flavor & 4G; IPPP DURHAM A. Soni

FIG. 13: Allowed regions in the $\Delta m_{q'} - \Delta m_{\ell'}$ plane within the 95%CL contour in the S-T plane, for the 4G2HDMs (left) and for the SM4 (right). The data points are varied as in Fig. 11.

Top pair FB asymmetry from strongly coupled 4G quarks

- [DavoudiasI, McElmurry and AS arXiv:1108.1173]
- CDF has been reporting ~2 sigma deviation from SM in the integrated asymm. And in the high invariant top pair mass about 3.5 sigma deviation from SM:
- 0.158 +- 0.075 vs 0.058+-0.009
- For high (>450 GeV), 0.475+-0.114 vs 0.088+-0.013
- NEW (EPS'11) D0 finds similar integrated asymmetery (a bit more significant than CDF); in the high mass region they see some increase but not so pronounced as CDF

ATLAS EXOTIES LIMIT ~ MAR. 2012

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012) 1 1 1 1 1 1 1 3.2 TeV M_D (δ=2) Large ED (ADD) : monoiet Large ED (ADD) : diphoton 3.0 TeV M_S (GRW cut-off) ATLAS UED : $\gamma\gamma + E_{\tau, miss}$ 1.23 TeV Compact. scale 1/R (SPS8) =1.1 fb⁻¹ (2011) [1111.4116] Preliminary RS with $k/M_{DI} = 0.1$: diphoton, $m_{\gamma\gamma}$ 1.85 TeV Graviton mass RS with $k/M_{pl} = 0.1$: dilepton, m_{ll} 2.16 TeV Graviton mass =4.8.5.0 fb⁻¹ (2011) [ATLAS.CONF.2012.007 $Ldt = (0.04 - 5.0) \text{ fb}^{-1}$ RS with k/M_{PI} = 0.1 : ZZ resonance, m 845 Gev Graviton mass RS with $g_{pqg/K} / g_s = -0.20$: tt \rightarrow I+jets, m_{tt} ADD BH ($M_{TH} / M_D = 3$): multijet, $\Sigma \rho_{\tau}$, N_{jets} 1.03 TeV KK gluon mass s = 7 TeV 1.37 TeV M_D (δ=6) ADD BH (M_{TH} /M_D=3) : SS dimuon, N_{ch. part.} 1.25 TeV M_D (δ=6) ADD BH $(M_{TH}/M_D=3)$: leptons + jets, Σp_{TH} 1.5 TeV M_D (δ=6) Quantum black hole : dijet, F (m) 4.11 TeV M_D (δ=6) 111) [ATLAS_CONE_2012_038] gggg contact interaction : \$(m*) 7.8 TeV A qqll Cl : ee, μμ combined, m, 10.2 TeV A (constructive int.) uutt CI : SS dilepton + jets + ET.miss 1.7 TeV A =1.0 fb⁻¹ (2011) [1202.6620 SSM Z' : m_{ee/µµ} 2.21 TeV Z' mass 4.8-5.0 fb⁻¹ (2011) [ATLAS-CONF-2012-007] SSM W': m_{T.e/µ} 2.15 TeV W mass =1.0 fb⁻¹ (2011) [1108,1316 Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj den. LQ mass =1.0 fb⁻¹ (2011) [1112,4828] 660 GeV 685 GeV 2nd den, LQ mass Scalar LQ pairs (β=1) : kin. vars. in μμjj, μνjj 4th generation : Q Q, → WqWq 350 GeV Q, mass 2011) [1202.3388 4th generation : u t ,→ WbWb 404 GeV U₄ mass =1.0 fb⁻¹ (2011) [1202.3076] 4^{th} generation : $d = d_{A} \rightarrow WtWt$ 480 Gev d, mass =1.0 fb⁻¹ (2011) (Preliminary New quark b' : b' $\overline{b} \rightarrow {}^{4}Zb+X, m_{7b}$ 400 Gev b' mass $TT_{exc. 4th gen} \rightarrow tt + A_0A_0$: 1-lep + jets + $E_{T,miss}$ Excited quarks : γ -jet resonance, m_{vlet} 420 GeV T mass (m(An) < 140 GeV) 11 11109 4725 2.46 TeV q* mass Excited quarks : dijet resonance, m 3.35 TeV q* mass Excited electron : e-y resonance, m 2.0 TeV e* mass (Λ = m(e*)) Excited muon : µ-y resonance, m 1.9 TeV μ* mass (Λ = m(μ*)) Techni-hadrons : dilepton, mee/µµ 1-126] 470 GeV ρ_/ω_T mass (m(ρ_/ω_T) - m(π_T) = 100 GeV) Techni-hadrons : WZ resonance (vIII), m ρ_{τ} mass $(m(\rho_{\tau}) = m(\pi_{\tau}) + m_W, m(a_{\tau}) = 1.1 m(\rho_{\tau}))$ Major. neutr. (LRSM, no mixing) : 2-lep + jets 1.5 TeV N mass (m(W_p) = 2 TeV) 2.4 TeV W mass (m(N) < 1.4 GeV) W_R (LRSM, no mixing) : 2-lep + jets $H_{i}^{\pm\pm}$ (DY prod., BR($H_{i}^{\pm\pm}\rightarrow\mu\mu$)=1) : SS dimuon, m_{i} 55 GeV H^{±±} mass Color octet scalar : dijet resonance, m 1.94 TeV Scalar resonance mass Vector-like quark : CC, mive

*Only a selection of the available mass limits on new states or phenomena shown

Vector-like quark : NC, mila

dimensions

Extra

0

~

2

quarks

New

ferm.

÷5

ŵ

Other

INP IN FIAVOR, FPUPIZ, A. SONI

1111

10⁻¹

900 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$) **100 GeV** Q mass (coupling $\kappa_{qQ} = v/m_Q$)

10

10²

Mass scale [TeV]

Lesson learnt from v's

~ Circa 1983, after long and arduous efforts, Δm^2 upper bound used to be around a few ev² but efforts to Search oscillations continued basically because there was no good theoretical reason for m_v to be zero.

 Recall it took more than a decade beyond '83 and ∆m² had to be lowered by almost 4 orders of magnitude (!) before osc were discovered.

JIANGLAI LIU (INPAC, SHANGHAI); DAYA BAY

SSC 40 TeV ~ 1990 MAY WELL NEED SERIDUSLY THINKING OF GIGANTIC INTERNATIONAL HADRON COLLIDER ~ IDD TEV CM

NP in Flavor, FPCP12; A. Soni

Summary & Outlook

- Thanks to the ABFs significant progress was achieved in confirming SM-CKM-CP
- However, basic understanding of flavor continues to represent an outstanding challenge
- Several interesting anomalies exist, possibly hinting at NP in flavor/CP
- Warped extra dimension ideas represent most interesting theoretical construct for flavor...it may manifest in LEET models with 4 families
- Direct signatures in collider physics may require higher cm energies not within reach of LHC
- Along with more powerful gadgets at the intensity frontier, may well need GIHC

XTRAS

NP in Flavor, FPCP12; A. Soni

It is perhaps of some use to extract the values of \hat{B}_K , ξ_S and V_{cb} that are required to reduce to the 1σ level the discrepancy between the prediction given in Eq. (5) and $a_{(\psi+\phi+\eta'+K_SK_S)K_S} = 0.66 \pm 0.024$. We find that one has to choose either $\hat{B}_K^{\text{new}} = 0.96 \pm 0.024$, $\xi_S^{\text{new}} = 1.37 \pm 0.06$ or $V_{cb} = (44.3 \pm 0.6) \times 10^{-3}$.

Urgent questions for experiments

- BABAR, BELLE updates for a_sl^d
- BELLE (UPS5S run and nearby): a_sl^s and linear combination
- CDF,D0, LHCb: S(Bs->psi phi), a_sl^s, a_sl^d; S(phi Ks), A_FB(K*II)
- BELLEII; SBF: S(eta'Ks, phiKs,KsKsKs), Br(B->tau nu), a_sl^d, a_sl^s(?); S(B_d(s)->K* gamma rho(phi)); S(D0); a_sl(D0)...

Inputs: S(Bd-> ψ K), ϵ K, Δ Ms, Δ Md, Vcb, γ

- Hasn't it already been ruled out?
- PDG (like all BIBLES) has its shares of "errors"

4th family is not inconsistent with LEP EWPC See also M. Chanowitz, arXiv:0903.3570; 1007.0043; Erler abd Langacker 1003.3211

TABLE I. Examples of the total contributions to ΔS and ΔT from a fourth generation. The lepton masses are fixed to $m_{\nu_4} = 100 \text{ GeV}$ and $m_{\ell_4} = 155 \text{ GeV}$, giving $\Delta S_{\nu\ell} = 0.00$ and $\Delta T_{\nu\ell} = 0.05$. The best fit to data is (S, T) = (0.06, 0.11) [35]. The standard model is normalized to (0, 0) for $m_t = 170.9 \text{ GeV}$ and $m_H = 115 \text{ GeV}$. All points are within the 68% C.L. contour defined by the LEP EWWG [35].

Parameter set	m_{u_4}	m_{d_4}	m_H	$\Delta S_{ m tot}$	$\Delta T_{\rm tot}$
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19	0.20
(c)	330	260	300	0.21	0.22
(d)	400	350	115	0.15	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.21	0.25
Baryogenesis

 For SM3, there is unique CP invariance [Jarlskog '87]

$$J = \operatorname{Im} \operatorname{det}[M_{u}M_{u}^{\dagger}M_{d}M_{d}^{\dagger}]$$

$$= 2(m_{t}^{2} - m_{u}^{2})(m_{t}^{2} - m_{c}^{2})(m_{c}^{2} - m_{u}^{2})$$

$$(m_{b}^{2} - m_{d}^{2})(m_{b}^{2} - m_{s}^{2})(m_{s}^{2} - m_{d}^{2})A$$

$$= \operatorname{ex} \operatorname{ceeding} \operatorname{ly} \operatorname{cnal} \operatorname{free} \operatorname{free$$

In 4G models

 $J_{234} = 2(m_{t'}^2 - m_t^2)(m_{t'}^2 - m_c^2)(m_t^2 - m_c^2)$ $(m_{h'}^2 - m_h^2)(m_{h'}^2 - m_s^2)(m_h^2 - m_s^2)A_{234}$ Jazy 16 Jazy 0 J SHOUD FACILITATE SIGN/IFICANTLY But SM4 simple Higgs not good 4 phase Transition; 2 HPT Freezedopid [CDINE+KUSEN/KD]

Other exotic fermions are still alive and interesting, but the sequential 4th generation is in deep troupble!

In the SM, the total contributions to the muon g-2 (a_{μ}^{SM}) can be divided into three parts: the QED, the electroweak (EW) and the hadronic contributions. While the QED [1] and EW [2] contributions are well under control, the main theoretical uncertainties lies with the hadronic part which are difficult to control [3]. The hadronic loop contributions cannot be calculated from first principles, so that one relies on a dispersion relation approach [4]. At present the available $\sigma(e^+e^- \rightarrow hadrons)$ data are used to calculate the leading-order (LO) and higher-order vacuum polarization contributions to a_{μ}^{SM} ; the estimated contributions are given by [5, 6]

$$a_{LO}^{Had} = 6955(40)(7) \times 10^{-11}, \quad a_{NLO}^{Had,Disp} = -98(1) \times 10^{-11}.$$
 (1)

On the other hand, the hadronic light-by-light contribution cannot be calculated from data, hence, its evaluation relies on specific models. The latest determination of this term is [7]

$$a_{lbl}^{Had} = 116(39) \times 10^{-11}.$$
(2)

Including all these corrections, the complete SM prediction is given by

$$a_{\mu}^{SM} = 116591834(2)(41)(26) \times 10^{-11} , \qquad (3)$$

79

NP in Flavor, FPCP12; A. Soni

$$\begin{split} |V_{cb}|_{\text{excl}} &= (39.0 \pm 1.2)10^{-3} & \eta_1 = 1.51 \pm 0.24 \text{ [18]} \\ |V_{cb}|_{\text{incl}} &= (41.31 \pm 0.76)10^{-3} & \eta_2 = 0.5765 \pm 0.0065 \text{ [19]} \\ |V_{cb}|_{\text{tot}} &= (40.43 \pm 0.86)10^{-3} & \eta_3 = 0.494 \pm 0.046 \text{ [20, 21]} \\ |V_{ub}|_{\text{excl}} &= (29.7 \pm 3.1)10^{-4} & \eta_B = 0.551 \pm 0.007 \text{ [22]} \\ |V_{ub}|_{\text{incl}} &= (40.1 \pm 2.7 \pm 4.0)10^{-4} & \xi = 1.23 \pm 0.04 \text{ [23, 24]} \\ |V_{ub}|_{\text{tot}} &= (32.7 \pm 4.7)10^{-4} & \lambda = 0.2255 \pm 0.0007 \\ \Delta m_{B_d} &= (0.507 \pm 0.005) \text{ ps}^{-1} & \alpha = (89.5 \pm 4.3)^{\circ} \\ \Delta m_{B_s} &= (17.77 \pm 0.12) \text{ ps}^{-1} & \kappa_{\varepsilon} = 0.94 \pm 0.02 \text{ [25-27]} \\ S_{\psi K_S} &= 0.668 \pm 0.023 \text{ [28]} & \gamma = (74 \pm 11)^{\circ} \\ m_c(m_c) &= (1.268 \pm 0.009) \text{ GeV} & \hat{B}_K = 0.740 \pm 0.025 \\ m_{t,pole} &= (172.4 \pm 1.2) \text{ GeV} & f_K = (155.8 \pm 1.7) \text{ MeV} \\ f_{B_s} \sqrt{\hat{B}_s} &= (276 \pm 19) \text{ MeV} \text{ [23]} & \varepsilon_K = (2.229 \pm 0.012)10^{-3} \\ f_B &= (208 \pm 8) \text{ MeV} \text{ [23, 24]}^a & \hat{B}_d = 1.26 \pm 0.10 \text{ [23, 24]} \\ \mathcal{B}_{B \to \tau\nu} &= (1.68 \pm 0.31) \times 10^{-4} \text{ [30-32]} \end{split}$$

^aOur value of f_B reflects the change in the overall scale (r_1) recently adopted by the Fermilab/MILC and HPQCD collaborations [29] \rightarrow AS in 2008 WE ASSERT again/ul Canad be used

Hand-waving estimates

arXiv:1202.3795

Repercussions of Flavor Symmetry Breaking on CP Violation in D Decays

Thorsten Feldmann,^a Soumitra Nandi,^a and Amarjit Soni^b

- ^a Theoretische Elementarteilchenphysik, Naturwissenschaftlich Technische Fakultät, Universität Siegen, 57068 Siegen, Germany
- ^bPhysics Department, Theory Group, Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: thorsten.feldmann@uni-siegen.de, nandi@physik.uni-siegen.de, soni@bnl.gov

$$\frac{\left| \left(\sum_{k=0}^{n} c_{k} c_{k} + \frac{d}{W_{w}} \right) \right|^{2}}{\left(\sum_{k=0}^{n} |W_{eff}|B_{q}^{0}\rangle| \right)} \right| = \left(\sum_{k=0}^{n} |W_{w}^{1}|^{2} + \sum_{k=0}^{n} |W_{h}^{1}|^{2} \right)^{2} + \left(\sum_{k=0}^{n} |W_{h}^{1}|^{2} + \sum_{k=0}^{n} |W_{h}^{1}|^{2} \right)^{2} + \left(\sum_{k=0}^{n} |W_{h}^{1}|^{2} + \sum_{k=0}^{n} |W_{h}^{1}|^{2}$$

NP in Flavor, FPCP12; A. Soni

In a nutshell

- Bulk of NP effects in Bd,Bs mixing & in sin2β {CONFIRMS our 2008 findings}
- Bulk of NP NOT in B->τν, or in ε_K [Presence of subdominant effects therein certainly possible]
- Many, many checks (some next page) for robustness of the conclusions
- EXTREMELY DIFFICULT to RECONCILE RESULTS with CKM-SM

Outstanding Th.puzzles of our times

Hierarchy puzzle

• Flavor puzzle \triangle flavor = 2 C.g.

NP in Flavor, FPCP12; A. Soni Smar Smith 85

a <u>grup</u> = Mp 16° Tev Npp to avoid Constraint

$\Delta ACP(K\pi)$ (Lunghi +AS,'07)

NP in Flavor, FPCP12; A. Soni

NOTE: Asl(b) from D0 Collab is NOT being used despite the claimed deviation of over 3.2 σ as I have serious reservation about the the expt.

Suggested charged modes

 Since at issue is direct CP, no good reason at all not to use charged modes D⁺, Ds⁺

SCS $D^+ \rightarrow K^+ \overline{K^*}, K^{++} \overline{K^0}, \phi \pi^+, \pi^+ \eta'_{--}$ $D_s \rightarrow K^+ \phi (\eta'), K^0 (K^{+0}) \pi^+$

FXISTING DATA: CHARGED MODES

Mode	BR	$A_{ m CP}$ in $\%$	5σ Reach	
$D^+ \to K_S \pi^+$	$1.47 imes 10^{-2}$	-0.80 ± 0.26	1×10^{-3}	
		(-0.52 ± 0.14)		
$D^+ \to K^+ K_0^*(1430)$	1.79×10^{-3}	43^{+20}_{-26}	3×10^{-3}	
$\rightarrow K^+ K^- \pi^+$		(0.39 ± 0.61)		
$D_s \to \eta' \pi^+$	3.94×10^{-2}	-6.1 ± 3.0	$0.7 imes 10^{-3}$	4
		$(-5.5 \pm 3.7 \pm 1.2)$		
$D_s o K_S \pi^+$	1.21×10^{-3}	6.6 ± 3.3	4×10^{-3}	
		(6.53 ± 2.46)		

Table 1. Branching fractions and CP asymmetries in different charged D^+ and D_s decay modes [38] ([20]). The quoted (naive) 5σ reach for the sensitivity on $A_{\rm CP}$ refers to 10^9 produced D^+, D_s mesons at LHCb or future Super-B factories.

MORE EXPTINPUT MAY PROVE VERY USEFUL

SYNERGY with HE Colliders

NP in Flavor, FPCP12; A. Soni

Model independent determination of scale of new physics with a non-standard CP phase needed to fix B-CP anomalies {Lunghi + AS '09}

Scenario	Operator	$\Lambda (\text{TeV})$	φ (°)	
B_d mixing	$O_1^{(d)}$	$\begin{cases} 1.1 \div 2.1 & \text{no } V_{ub} \\ 1.4 \div 2.3 & \text{with } V_{ub} \end{cases}$	$\begin{cases} 15 \div 92 & \text{no } V_{ub} \\ 6 \div 60 & \text{with } V_{ub} \end{cases}$	
$B_d = B_s$ mixing	$O_1^{(d)} \& O_1^{(s)}$	$\begin{cases} 1.0 \div 1.4 & \text{no } V_{ub} \\ 1.1 \div 2.0 & \text{with } V_{ub} \end{cases}$	$\begin{cases} 25 \div 73 & \text{no } V_{ub} \\ 9 \div 60 & \text{with } V_{ub} \end{cases}$	
K mixing	$O_1^{(K)}$ $O_4^{(K)}$ LR	< 1.9 < 24	$130 \div 320$	
$\mathcal{A}_{b ightarrow s}$	$\begin{array}{c} O_4^{b \rightarrow s} \\ O_{3Q}^{b \rightarrow s} \end{array}$	$.25 \div .43$ $.09 \div .2$	$\begin{array}{c} 0 \div 70 \\ 0 \div 30 \end{array}$	

PRL 48:848,1982

Other exotic fermions are still alive and interesting, but the sequential 4th generation is in deep troupble!

b' decay pattern

 $m_{b'}$ =500 GeV, m_{h} =220 GeV, m_{H+} =300 GeV, $\tan\beta$ =1, ϵ_{t} = $m_{t}/m_{t'}$

Phenomenology of type-I 4G2HDM

• FCNC effects only in t' \rightarrow t & b' \rightarrow b transitions

e.g.,
$$\mathcal{L}(ht't) = -\frac{g}{2}\frac{m_{t'}}{m_W}\epsilon_t\sqrt{1+t_\beta^2} \,\overline{t}'\left(R+\frac{m_t}{m_{t'}}L\right)th$$
,

 Enhanced htt Yukawa interaction while suppressed ht't' one:

$$\mathcal{L}(htt) \approx \frac{g}{2} \frac{m_t}{m_W} \sqrt{1 + t_\beta^2} \left(1 - |\epsilon_t|^2 \right) \ \bar{t}th \stackrel{|\epsilon_t|^2 \ll 1}{\longrightarrow} \frac{g}{2} \frac{m_t}{m_W} \sqrt{1 + t_\beta^2} \ \bar{t}th$$

$$\mathcal{L}(ht't') \approx \frac{g}{4} \frac{m_{t'}}{m_W} \sqrt{1 + t_\beta^2} |\epsilon_t|^2 \ \overline{t}' t' h$$

b->s γ, Z-> bb, oblique correctionsetc See Bar-Shalom, Nandi, AS,arXiv:1105.6095

SCALARS'11; WARSAW A.SONI