

DASPOS Overview

Mike Hildreth

Université de Notre Dame du Lac & Fermilab

Representing the DASPOS Project

20 November 2012

Introduction

- <u>Data And Software Preservation for Open Science</u>
- Multi-disciplinary effort recently funded by NSF
 - 3 Years of funding
 - Participants: Notre Dame, University of Chicago, University of Illinois Urbana-Champaign, University of Nebraska Lincoln, New York University, University of Washington, (BNL, FNAL)
 - Open communication and advice from CERN, OSG, DPHEP, DataNet, etc.
- Links HEP effort (DPHEP+experiments) to other disciplines
 - Close collaboration with national labs, experimental efforts
- Diverse set of participants:
 - HEP, including computation experts
 - Computer Scientists, including HPC experts
 - Digital Librarians, including SDSS curators, Bioinformatics

Overview

- Goal: explore common solutions to Data and Software Preservation
- aim to achieve some commonality across disciplines in
 - meta-data descriptions of archived data
 - What's in the data, how can it be used?
 - computational description
 - how was the data processed?
 - i.e.: follow Tier 3 reconstructed data to final physics result
 - impact of access policies on preservation infrastructure
- Two aspects of the project: "T" shape
 - Discovery & Coordination Activity
 - workshops to address relevant issues, communication
 - broad interest and exploration
 - Prototyping & Experimentation Activity
 - building test infrastructures, computation/curation challenge
 - · focus on building a vertical slice of architecture

Discovery & Coordination: Year 1 Workshops

Plan Workshops on Data/Software/Analysis Preservation in 2013:

1. HEP-Focused (Spring @ CERN)

- Address issues of commonality (or lack thereof) in HEP D/S/A preservation across the HEP community
- Familiarize outside experts with HEP problems
- One "Level 2" data question: can we agree on a common 4vector format and descriptors?
 - May be an easier place to start...
- Focus on "Level 3" data tier
- Can we agree on a preliminary set of use cases for re-analysis?
- Can we agree on a preliminary set of descriptors/metadata that can be used to characterize:
 - The analysis performed?
 - The computation steps used to produce the final result?
 - The software required to produce the final result?

Discovery & Coordination: Year 1 Workshops

- 2. Multi-Disciplinary D/A/S Preservation "Survey" Workshop
 - (~ Summer, Satellite of major Data Preservation conference)
 - Obtain overview of D/A/S workflows in other scientific disciplines using large datasets
 - Already have contacts with Astro, Bio-Informatics, etc.
 - Intent: attempt to define a level of commonality for
 - Ontology development: Metadata descriptions of data, processing, software
 - Can we re-use ones sufficient for HEP with some adaptation?
 - rely on expertise from Digital Librarians
 - At a base level, can we create a common framework?
 - Explore: impact of access policy decisions on
 - Storage architectures/networking
 - Content of metadata
 - Implications for HEP?
 - Interfacing with OAIS?

Discovery & Coordination: Year 1 Workshops

- 3. Data Model and Query Symantics
 - (~ late 2013, FNAL or CERN?)
 - CS and infrastructure specialists meet HEP head-on
 - Once initial ideas on metadata have had a chance to mature and some agreement has been reached on what should be stored,
 - can we achieve a common logical model for the organization of the stored data?
 - can we arrive at a set of ways in which the metadata will be queried?
 - how are future analysts going to look at this data, and what organizational structure does that imply?
 - Input from this meeting, plus technical results from prototyping, will help drive the architecture

Discovery & Coordination: Year 2 Workshops

Three more workshops in Year 2 to round out the topics:

- 1. Software Sustainability
 - establishment of software life-cycle and needs
 - long-term models and mechanisms for software preservation
- 2. Preservation Policies
 - explore access and preservation policies and the constraints these impose on data preservation
- 3. Technical Developments in Storage Architectures
 - collect best practices in large-scale and long-term storage architectures

Prototyping & Experimental Task

- In parallel, will build test technical infrastructure to implement a data preservation system
 - Will translate needs of analysts into a technical implementation of meta-data specification
 - Will create means of instantiating computation from metadata description
 - Will implement "physics query" infrastructure across smallscale distributed network
 - product: "template architecture" for data preservation systems

Definition of "success":

We will consider this project a success if we have created a clear intellectual structure and useful prototypes that enable others to carry the effort forward with greater resources

Prototyping & Experimental Task

- Technical infrastructure portion of the project is based on building prototype systems with the desired functionality
 - "scouting party" to figure out where the most pressing problems lie, and some solutions
 - incorporate input from multi-disciplinary dialogue, use-case definitions
- Primary task #1: Create Data Model & Query Semantics
 - What data is to be stored, how is it queried?
 - information from Workshops
 - Test these models by building small-scale systems
 - pay particular attention to scalability issues
 - Test effects of distributed data on query specification

Prototyping & Experimental Task

- Primary Task #2: Define Elements of Software Reproducibility
 - How do you re-create an analysis result?
 - Several elements:
 - define naming scheme for user specification of configuration
 - dependency analysis to ascertain which software is needed
 - create means of "task insertion" = execution based on the provided information
 - provide reproducibility checking & validation for results
- Small-scale "Reproducibility Challenges" will be conducted to track progress, insure that necessary elements and correct descriptions are present

(10) 20 November 2012

Curation Challenge

- Test analyst "T" will reproduce an analysis at a level specified by and Audit Team "A"
 - Final Demonstrator of DASPOS prototype architecture

(11) 20 November 2012

Mike Hildreth - DPHEP Marseille - 2012

🛟 Fermilab

Outlook:

- Broad, Ambitious Effort
 - relatively small team, but diverse set of expertise
 - Reminder: not trying to solve the world's problems
 - A "scouting party": push forward in what looks like a good direction without worrying about full world-wide consensus
- Coordination is Key
 - We must coordinate with other D/A/S preservation efforts
 - Interface with DPHEP is critical
 - knowledge from previous work, other fields essential

Please help if you can!

