
CMS 64-bit transition
&

multi-core plans

Giulio Eulisse - FNAL hitman

taking credit for work done by

Peter Elmer, Vincenzo Innocente, Chris Jones, Lassi Tuura & many others

1

CMS 64-bit transition

2

x86-64
Pros:

• Better architecture

additional / larger registers, better calling convention, reduced -fPIC cost, i.e. all in all
from 15% (G4) to 30% (HLT, Reco) faster

Cons:

• Some “coding assumptions” are not valid anymore

• Memory hungry

pointers take double the memory, by default linker aligns DSOs to MB page boundaries in 64bit
mode

• CISC math no more

x86-64 math unit lacks / has extremely different implementation of transcendental functions. libm
falls back using more accurate (slower) software implementation to ensure IEEE compatibility

3

Memory footprint myth-busting
VSIZE* is in general a very
poor metric for actual
memory usage

Accounting should measure actual system memory use,
not just address space allocation (VSIZE). Lots of
modern programs written for 64-bit expect they can
use address space liberally, and are smart about actual
memory use

Most of the VSIZE increase comes from the fact the
dynamic linker, by default, uses N-MB alignment for
DSOs (libraries etc.). This is not actual memory usage -
the gaps are unmapped. We are working around VSIZE-
based accounting by using linker options to reduce gaps

VSIZE includes mmap-ed files which are actually read
lazily from disk. It consumes memory only if paged in

* size of the process mapped address space

4

Memory footprint facts
Nevertheless we see a 25-30%
increase in RSS.

Padding and alignment overhead
increases on 64-bit systems, especially
with small field/object sizes

Pointers take double the amount of
memory

People who don’t know the difference
between int and long (and use the latter)
take double the amount of memory

Good news is that all the clean-ups we
are already used to do for 32-bit now
give a 2x gain

5

CMS and 64 bit

CMS ported its software stack to work natively on
Linux / MacOSX x86-64

• Online high level trigger farm software

• Offline reconstruction and analysis

• Computing components and websites

Since 2011 we no longer build 32-bit software releases

Mission accomplished

6

CMS multi-core plans

7

Multi-core
Mega-Hertz rush is over

Future is multi-core (until graphene will get in the loop)

8

future is already a few years old and apart from
videogame developers and wind-tunnel guys everybody

else still needs to figure it out

9

HEP present: single-core scheduling

10

HEP present: single-core scheduling

Bad idea:

The memory needs increase with each
generation of CPU

The number of independent readers and
writers (to local disk, to remote storage)
increases with each generation of CPU

An ever increasing numbers of
independent and possibly incoherent jobs
running on any given piece of physical
hardware.

Each of these running “jobs” commands an
ever tinier slice of resources and do not
explicitly share resources they could share

11

At current rate we might end up not being able to afford 2GB per core

12

CMS offline software memory budget

Event specific data

Read only data
geometry,

magnetic field,
conditions and alignment,

physics processes, etc

Code

~1.2 GB

13

CMS offline software memory budget

Event specific data

Read only data
geometry,

magnetic field,
conditions and alignment,

physics processes, etc

Code

~1.2 GB

COMMON!
14

C-o-W*
• Most (all?) of the common const data / code can

actually be brought in the application very early

• If you fork at that point, the kernel is actually
smart enough to share the common data memory
pages between parent and the children

• The kernel “un-shares” the memory pages only
when one of the processes writes to them

• New allocations (i.e. event data) end up in non
shared pages

* Copy-on-Write

15

CMS near future multicore strategy:
 forking

Event
specific

data

Shared common data

Event
specific

data

Event
specific

data

Event
specific

data

Event
specific

data

Event
specific

data

16

Forking: memory sharing

Measurements done using reconstruction with 64bit software on
4 CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128

Shared memory per child: ~700MB
Private memory per child: ~375MB
Total memory used by 32 children: 13GB
Total memory used by 32 separate jobs: 34 GB

0

200000

400000

600000

800000

00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Shared Data vs Time

S
ha

re
d

 D
at

a
(k

B
)

Time since start of process (minutes)

0

200000

400000

600000

800000

00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Private Data vs Time

P
riv

at
e

D
at

a
(k

B
)

Time since start of process (minutes)

Short periods of high parallelism

Extended periods of only 1 or 2 modules running
Tracking
Electron and muon finding

17

Forking: memory sharing

Measurements done using reconstruction with 64bit software on
4 CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128

Shared memory per child: ~700MB
Private memory per child: ~375MB
Total memory used by 32 children: 13GB
Total memory used by 32 separate jobs: 34 GB

0

200000

400000

600000

800000

00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Shared Data vs Time

S
ha

re
d

 D
at

a
(k

B
)

Time since start of process (minutes)

0

200000

400000

600000

800000

00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Private Data vs Time

P
riv

at
e

D
at

a
(k

B
)

Time since start of process (minutes)

Short periods of high parallelism

Extended periods of only 1 or 2 modules running
Tracking
Electron and muon finding

We suddenly
have lots of

free memory
available

18

Forking: throughput

Short periods of high parallelism

Extended periods of only 1 or 2 modules running
Tracking
Electron and muon finding

0

0,275

0,550

0,825

1,100

0 8 16 24 32 40

Events/sec/core vs Number of Cores

E
ve

nt
s/

se
c/

co
re

Number of Cores Used

Measured Forked
Measured Separate Jobs

0

12,5

25,0

37,5

50,0

0 8 16 24 32 40

Events/sec vs Number of Cores

E
ve

nt
s/

se
c

Number of Cores Used

Measured Forked
Measured Separate Jobs
Perfect Scaling

19

Resource accounting

VSIZE is NEVER a good way of accounting for actual memory
usage. In particular on 64bit

RSS is only slightly better. It works in the case of a single process, but still
does not actually account for sharing of resources in forking jobs

Multi-core(-aware) applications require a global understanding of the physical to
logical memory mapping. CMS requested using PSS to account

memory use

More resources:

http://www.selenic.com/smem/

"ELC: How much memory are applications really using?" (http://lwn.net/Articles/230975/)

20

http://lwn.net/Articles/230975/
http://lwn.net/Articles/230975/

“Whole-node” scheduling

Exploiting this new processing model requires a new
model in computing resources allocation as well

Experiments need to have control over a larger quantum of resources
as multi-core aware jobs require scheduling of multiple cores at the same time

Correct resource accounting fundamental (and gets trickier)

21

“Whole-node” scheduling
One natural unit in the system is the
“whole node”: the physical thing running
one (unvirtualized) copy of the OS and
sharing a set of resources (CPU, disk,
network, etc.)

The applications explicitly take over the management
of the sharing of resources within the “whole node”
quantum of resources

Compatible with current modus-operandi, will allow
moving to forking / multi-threading, allowing for
optimization of data/workflow management: I/O
caching, local merging, etc

Sites only need to care about the whole node, not
individual processes

A move to a proper “whole node” accounting for
CPU / memory use, etc. recognizes the role of the
OS in optimizing access to resources

22

Whole-Node Job Submission Task Force*

whole-node-task-force@cern.ch

(chaired by Peter.Elmer@cern.ch)

*LCG-MB mandated
23

mailto:whole-node-task-force@cern.ch
mailto:whole-node-task-force@cern.ch

Far future(?): multi-threading

Current single threaded processing

algorithm / module

24

Far future(?): multi-threading

This is theoretically interesting but in practice
not worth the effort!

Unrelated parts could be elaborated by
separate threads to increase throughput

25

Behavior / bottlenecks can be “estimated” even now

Module A

Module B

Module C

Module D

0 75 150 225 300

Average module
processing duration

(single threaded) is well
known

Module dependencies are known
time

26

0

4

8

12

16

20

0 0,5 1,0 1,5 2,0

Number of Running Modules vs Time for TTBar RECO
N

um
b

er
 o

f c
on

cu
rr

en
tly

 r
un

ni
ng

 m
od

ul
es

Average time processing one event (sec)

Tracking
Electron and
muon finding

27

Conclusions

• 64bit migration done

• Forking proves to be effective and enough of
a no-brainer for being considered a good
strategy for the short - medium term

• The effort which would be required to have
module level parallelism is not worth the
actual gain given the current decomposition of
algorithms

• Deployment of whole-node
scheduling and associated system
level accounting key to exploiting
multi-core

28

