Update on Semileptonic B Decays

Vera Lüth SLAC - Stanford University

Presentation at FPCP 2012 @ Hefei (China) May 21 – 25, 2012

Most of the averaged results are based on HFAG End of Year 2011.

FPCP 2012 @ Hefei 2012

Update on Semileptonic B Decays from B Factories

- Introduction
- Exclusive Measurements
 - $B \to D \ell \nu$ and $B \to D^* \ell \nu$
 - $B \to \pi \ell \nu$
- Inclusive Measurements
 - $\mathbf{B} \to \mathbf{X}_c \, \ell \, \mathbf{v}$
 - $\mathbf{B} \to \mathbf{X}_u \, \ell \, \mathbf{v}$
- Status of |V_{cb}| and |V_{ub}|
 - Study of $B \to \mathrm{D} \tau \nu$ and $B \to \mathrm{D}^* \tau \nu$
 - Motivation
 - Experimental Results
 - Limits on Charged Higgs (Type II 2HDM)
- Conclusions and Outlook

Semileptonic Decays at B-Factories @ 10.58 GeV

$$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$$

Cleanest source of B mesons:

 $\sigma_{\mathrm{Y}(4S)} \approx 1.05 \, nb$ (24% of σ_{had})

- Reconstruction of S.L. decays
 - charged lepton: e[±], μ[±]
 - hadron: D, D*, π , ρ ,..., X_c, X_u
 - v: E_{miss} , p_{miss}

$$(E_{\text{miss}}, \vec{p}_{\text{miss}}) = (E_{e^+e^-}, \vec{p}_{e^+e^-}) - \left(\sum_i E_i, \sum_i \vec{p}_i\right)$$

- Exclusive B decays:
 - kinematic variables:

$$\Delta E = E_B - E_{beam}$$
 signal at $\Delta E \approx 0$

 $m_{ES} = \sqrt{E_{beam}^2 - \vec{p}_B^2}$ signal at $m_{ES} \approx m_B$

- ♦ BB tag: full reconstruction of one B decay: $B^+_{tag} \rightarrow D^- \pi^+ \pi^+$, $B^- \rightarrow X_c^0 I^- v$
 - Significant reduction in comb. backgrounds, improvement in E_{miss}, p_{miss}
 - Low tag efficiency , 0.3 1.0 %

V. Lüth

FPCP 2012 @ Hefei 2012

B Factory Averages: (HFAG 2011) $BF_{D^*+I-v} = (4.83 \pm 0.02_{stat} \pm 0.12_{syst}) \ 10^{-2}$ $BF_{D^+I-v} = (2.14 \pm 0.03_{stat} \pm 0.06_{syst}) \ 10^{-2}$

There used to be a very poor agreement between measurements, now fairly good consistency!

Extraction of $|V_{cb}|$ from $B \rightarrow D^{(*)} \ell_V$ Decays

- ♦ The differential decay rate $\frac{d\Gamma(B \rightarrow D^* \ell \nu_{\ell})}{dwd \cos\theta_{\ell} d \cos\theta_{V} d\chi} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 F^2(w, \theta_{\ell}, \theta_{V}, \chi) K(w)$ Universal Form Factor Phase Space $w \equiv \frac{M_B^2 + M_{D^*}^2 q^2}{2M_B M_{D^*}}$
 - $B \rightarrow D \ell v$: a single FF: G(w)
 - $B \rightarrow D^* \ell_{\mathcal{V}}$: $F(w, \theta_{\lambda}, \theta_{\varpi}, \chi)$ incorporates 3 form factors, $A_1(w), A_2(w), V(w)$
- ✤ HQ Symmetry predicts a unique universal F(w) with
 - Common shape given by ρ^2 , constraints by analyticity and unitarity
 - Normalization at zero-recoil: F(w=1)=G(w=1)=1.0
 So, QCD correction to F(1) and G(1) needed
- Extract FF parameters by fits to differential decay rates
 - $B \rightarrow D \ell_V$: Fit: 1-dim. decay distribution G(w): parameters: $|V_{cb}|$ G(1) and slope ρ^2
 - $B \rightarrow D^* \ell_V$: 4-dim. decay distribution $G(w, \theta_{\lambda}, \theta_v, \chi)$ parameters: $|V_{cb}| F(1)$, slope ρ^2 , $R_1(w=1)$ and $R_2(w=1)$

$|V_{cb}|$ from $B \rightarrow D \ell^+ v$ and $B \rightarrow D^* \ell^+ v$ Decays

- Fits to w-dependence give ρ and G/F(1) |V_{ub}|
- Recent unquenched Lattice QCD calculations: *) $G(1) = 1.074 \pm 0.018_{stat} \pm 0.016_{syst}$ $F(1) = 0.908 \pm 0.005_{stat} \pm 0.016_{syst}$ FNAL/MILC 2011
- BABAR and Belle measurements translate to

D ℓv : $|V_{cb}| = (39.46 \pm 1.54_{exp} \pm 0.88_{LQCD}) \times 10^{-3}$ D* ℓv : $|V_{cb}| = (39.04 \pm 0.55_{exp} \pm 0.73_{LQCD}) \times 10^{-3}$

*) Calculations based on HQ sum rules result in an increase of $|V_{cb}|$ by 5.7%: $G(1)=1.02 \pm 0.04$ $|V_{cb}| = (41.84\pm 1.64_{exp}\pm 1.63_{SR}) \times 10^{-3}$ $F(1)=0.86 \pm 0.02$ $|V_{cb}| = (41.22\pm 0.58_{exp}\pm 0.95_{SR}) \times 10^{-3}$

PRD 81, 113002 (2010)

B Factory Average (HFAG 2011):

$BF_{\pi - I + \nu} = (1.44 \pm 0.03_{stat} \pm 0.05_{syst}) \ 10^{-4}$

Excellent agreement between BABAR and Belle. Systematic uncertainties dominated by BG and v reconstruction

Also, new tagged measurement from Belle (unpublished)

 $BF_{\pi-I+\nu} = (1.49 \pm 0.09_{stat} \pm 0.09_{syst}) \ 10^{-4}$

Belle: $B \rightarrow (\pi, \rho, \omega, \eta, \eta') \ell v$ with Hadronic Tags

V. Lüth

FPCP 2012 @ Hefei 2012

Belle: $B^0 \rightarrow \pi^+ \ell \nu$ with Hadronic Tags

Improved hadronic tags open new opportunities:

- First look at q² dependence
- Extraction of |V_{ubl} based on partial integral
- Results agree very well with previous untagged measurements – almost too well!

Stay tuned - much more to come!

Theory	q ² [GeV ²]	$ V_{ub} \times 10^{-3}$
KMOW[1]	<12	$3.38 \pm 0.14 \pm 0.09^{+0.37}_{-0.31}$
Ball/Zwicky[2]	<16	$3.57 \pm 0.13 \pm 0.09^{+0.47}_{-0.47}$
FNAL[3]	>16	$3.69 \pm 0.22 \pm 0.09^{+0.39}_{-0.35}$
HPQCD[4]	>16	$3.86 \pm 0.23 \pm 0.10^{+0.53}_{-0.53}$

 $B^0
ightarrow \pi^+ \ell \nu$

Extraction of $|V_{ub}|$ from $B \rightarrow \pi \ell v$ Decays

 Extract |V_{ub}| from combined fit to data and LQCD prediction based on BCL expansion

$$f_{+}(q^{2}) = \frac{1}{\mathcal{P}(q^{2})\phi(q^{2}, q_{0}^{2})} \sum_{k=0}^{k_{\max}} a_{k}(q_{0}^{2})[z(q^{2}, q_{0}^{2})]^{k},$$

2nd order polynomial plus normalization.

Experimental and theoretical errors reduced

- Measured q² spectrum constrains the FF shape
- LQCD provides normalization (only 4/12 points)
- Combined fit to Belle (1) and BABAR (2) results:

 $|V_{ub}| = (3.23 \pm 0.18_{exp} \pm 0.24_{th}) \ 10^{-3}$ = (3.23 ± 0.30) \ 10^{-3}

LCSR predicts: f₊(0) = 0.28 ± 0.02, fit result: f+(0) = 0.29 ± 0.03

$|V_{cb}|$ from Inclusive $B \rightarrow X_c \ell v$ Decays: OPE

• Operator Product Expansion relates parton to meson decay rate: $1/m_b$, $\alpha_s(m_b)$ $\Gamma_{SL} = |V_{cb}|^2 \frac{G_F^2 m_b^5}{192\pi^3} (1 + A_{EW}) A_{pert} \times [c_0(r) + \frac{0}{m_b} + c_2(r, \frac{\mu_{\pi}^2}{m_b^2}, \frac{\mu_{G}^2}{m_b^2}) + c_3(r, \frac{\rho_D^3}{m_b^3}, \frac{\rho_{LS}^3}{m_b^3}) + ...]$ free quark perturbative power corrections $r=m_c/m_b$

- Contrary to differential distributions, low-order moments over large phase space avoid problem with quark-hadron duality
- Moments can be calculated for cut-off in E_l (add $B \rightarrow X_s \gamma$, sensitivity to m_b)

$$\langle M_x^n \rangle|_{E_{\ell}>E_0} = \tau_B \int_{E_0} M_x^n d\Gamma = f(E_0, m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3)$$

Quark masses Non-perturbative parameters
Calculations in "kinetic" and "1S" mass schemes
Benson, Bigi, Gambino, Mannel, Uraltsev Bauer, Ligeti, Luke, Manohar, Trott,
Clobal fit to extract 8 parameters: IV 1 BE m m u 2 u 2 o 3 o

- Global fit to extract 8 parameters: $|V_{ub}|$, BF, m_c, m_b, μ_{π}^2 , μ_{G}^2 , ρ_{D}^3 , ρ_{LS}^3
- >60 measured moments available from DELPHI, CLEO, BABAR, Belle, CDF

V_{cb}: Moment Measurements

Inclusive s. I. decays recoiling against a fully reconstructed hadonic B tags

- Measure inclusive distributions
 - Lepton momentum p*
 - Hadronic mass m_X, q², P₊
- Correct or unfold measured spectra to obtain true distributions
- Also include $B \rightarrow Xs \gamma$ energy moments (sensitivity to m_b)

N.B. Each points integrates data above E_{min}, i.e. points are highly correlated !! Treatment of those correlations somewhat ad-hoc for data and theory!

FPCP 2012 @ Hefei 2012

|V_{cb}| from OPE Fits to Moments

Quark masses are critical and not a priori known Fit determines precisely linear combination of m_b and m_c, In the past, $B \rightarrow s\gamma$ moments improved the sensitivity

Now input $m_c(3GeV)=0.998 \pm 0.029 \text{ GeV}$ (\overline{MS} Scheme) 3 independent calculations of m_b and m_c with uncertainties of 6 -15 MeV

hep-ph/0008102 (2000) PRD 80, 074010 (2009) PRD 82, 034512 (2010)

Global Fit by HFAG to 64 moments (kinetic scheme)

 $|V_{cb}| = (41.88 \pm 0.44_{fit} \pm 0.59_{theory}) \times 10^{-3}$ $m_b = 4.560 \pm 0.023 \text{ GeV}$ $\mu_{\pi}^2 =$ 0.453 ± 0.036 GeV²

Very similar results for fits to 1S scheme calculations

- Considerable improvements underway
 - higher order QCD terms beyond $O(\alpha_s^2)$ and $O(m_b^3)$
 - m_c mass error might be reduced by $\frac{1}{2}$
 - Treatment of correlations ?!

$|V_{ub}|$ from Inclusive $B \rightarrow X_u \ell v$

Experimental challenges

- Large $B \rightarrow X_c I_V$ background (50x larger) requires restriction in phase space
- Full event reconstruction to measure variables like M_{χ} and q^2

Theoretical challenges - OPE convergence destroyed in limited phase space

- Rates become more sensitive
 - Unknown higher orders terms in α_s and $1/m_b$ expansions
 - Dynamics of b-quark inside B meson Unknown Shape functions (SF)
- Uncertainties in input parameters
 - m_b: total rate $\Gamma \sim |V_{ub}|^2 m_b^5$, partial rates $\Delta \Gamma \sim |V_{ub}|^2 m_b^{10}$

Several QCD calculations available to predict the normalization:

BLNPmulti-scale OPE based on SCETNP B699, 335 (2004).DGEresummed perturbations theoryJHEP 0601, 096 (2006)GGOUlarge range of distributions fct.JHEP 0710, 058 (2007)ADFRrelates partial Bf to total BFEur. Phys. J. C59, 831 (2009)

$|V_{ub}| \text{ from Inclusive } B \to X_u \ell \nu \text{ Decays}$

- Best measurements from fit to M_X vs q² with low restriction on p_l > 1 GeV
- BABAR and Belle results in very good agreement.
 Arithmetic average for the 4 QCD calculations:

 $|V_{ub}| = (4.41 \pm 0.15_{exp} \pm 0.17_{theory}) \times 10^{-3}$

Systematic error mostly from $B \rightarrow X_u I_v$ and BG simulation BABAR measurements in different kinematic regions agree!

- Expected improvements
 - Develop Global Fit to moments from $B \rightarrow X_u I_v$ and $B \rightarrow X_s \gamma$ to extract $|V_{ub}|$, μ_{π}^2 , with precise quark masses as input.
 - Factorize Shape Fct. into non-perturbative (from data) and perturbative (from theory)

Exclusive vs Inclusive |V_{xb}| Measurements: Tension!! (HFAG averages for B Factory results only)

- $|V_{cb}|$ Exclusive (D*I_v) expt. error: 1.4% LQCD normalization: 1.9% Inclusive expt. error: 1.1 % Theory error 1.4% $|V_{ub}|$ Exclusive $(\pi |\nu)$ 5.5 % expt. error: LQCD normalization 7.5% |V_{ub}| Inclusive improved expt. error: 3.6% much improved theory 3.9%
- Another Problem: $B \rightarrow \tau \nu$

$$\begin{vmatrix} V_{cb} \end{vmatrix} = (39.04 \pm 0.55 \pm 0.73) \cdot 10^{-3} \\ 2.4\sigma \\ \begin{vmatrix} V_{cb} \end{vmatrix} = (41.88 \pm 0.44 \pm 0.59) \cdot 10^{-3} \\ \end{vmatrix}$$

$$\begin{vmatrix} V_{ub} \end{vmatrix} = (3.23 \pm 0.18 \pm 0.24) \cdot 10^{-3} \\ 2.7\sigma \\ \begin{vmatrix} V_{ub} \end{vmatrix} = (4.41 \pm 0.15 \pm 0.17) \cdot 10^{-3} \\ \end{vmatrix}$$

$$2.7\sigma \\ \begin{vmatrix} V_{ub} \end{vmatrix} = (5.0 \pm 0.6) \times 10^{-3} \\ 2.7\sigma \\ \end{vmatrix}$$

Caveat: Based on BF average of 4 low statistics BF measurements! Wait for more data!

S.L. Decays Involving the Heavy Lepton $\boldsymbol{\tau}$

Ratio of $B \rightarrow D^{(*)}\tau \nu \text{ vs } B \rightarrow D^{(*)}\ell \nu \text{ Decays}$

S.L. decays involving a τ^{\pm} have an additional helicity amplitude (for D* τv):

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} |H_{t}|^2 \right]$$

For $D\tau\nu$, only H_{00} and H_t contribute!

To test the SM Prediction, we measure

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau\nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$

Leptonic τ decays only

(extend to lower momenta)

Several experimental and theoretical uncertainties cancel in the ratio!

- BB events are fully reconstructed:
 - full reconstruction of hadronic B decay: Btag (tag efficiency improved)
 - > reconstruction of D^(*) and e^{\pm} or μ^{\pm}
 - no additional charged particles
 - > kinematic selections: $q^2 > 4 \text{ GeV}^2$

Background suppression by BDT (combinatorial and $D^{**}|_{v}$)

Full BABAR data sample, MC correction based on data control samples
 V. Lüth FPCP 2012 @ Hefei 2012

$B \rightarrow D^{(*)} \tau_{V}$: Extraction of Yields from M.L. Fit

to be submitted to PRL

 $D^0\ell\nu$

 \mathbf{p}_{ℓ}^{*} Lepton momentum

in B rest frame

- Unbinned M.L. fit
 - 2-D distributions:

- $m_{miss}^2 = (P_{ee} P_{Btag} P_{D(*)} P_{\ell})^2$ Missing mass sq
- 4 signal samples: $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, $D^{*+}\ell$, (e[±] or μ^{\pm})
- 4 D^(*) $\pi^0 \ell_V$ Control samples
- PDFs from MC (approximated using Keys fct.)

Events/(0.05 GeV²)

400

200

- **Fitted Yields**
 - 4 D^(*) τv Signal
 - 4 D^{(*} $\ell_{\rm V}$ Normalization
 - 4 D** *ev* Backgrounds
- Fixed Backgrounds
 - B⁰–B⁺ cross feed
 - **BB** combinatorial **BG**
 - Continuum $e^+e^- \rightarrow f f(\gamma)$

V. Lüth

$B \rightarrow D^{(*)} \tau_{V}$: Extraction of Yields from M.L. Fit

- Unbinned M.L. fit
 - 2-D distributions:
 - 4 signal samples: $D^{0}\ell$, $D^{*0}\ell$, $D^{+}\ell$, $D^{*+}\ell$, (e^{\pm} or μ^{\pm})
 - 4 D^(*) $\pi^0 \ell_V$ Control samples
- PDFs from MC (approximated using Keys fct.)
- Fitted Yields
 - 4 D^(*) τν Signal
 - 4 D^(*) $\ell_{\rm V}$ Normalization
 - 4 D** ℓv backgrounds
- **Fixed Backgrounds**
 - B^0-B^+ cross feed
 - **BB** combinatorial **BG**
 - Continuum $e^+e^- \rightarrow f f(\gamma)$

Missing mass sq

 D^0

100

50

Events/(0.05 GeV²)

 p_{ℓ}^{τ} Lepton momentum in B rest frame

FPCP 2012 @ Hefei 2012

Results of Fit: $B \rightarrow D^* \tau v$

	$D^{*0}\tau\nu$	$D^{*+}\tau\nu$	$D^* \tau \nu$
$N_{ m sig}$	639 ± 62	245 ± 27	888 ± 63
Significance (σ)	11.3	11.6	16.4
$R(D^*)$	0.322 ± 0.032	0.355 ± 0.039	0.332 ± 0.024

Isospin contrained

Fixed yield

25

Results of Fit: $B \rightarrow D\tau v$

	$D^0 \tau \nu$	$D^+ \tau \nu$	$D\tau\nu$
$N_{ m sig}$	314 ± 60	177 ± 31	489 ± 63
Significance (σ)	5.5	6.1	8.4
R(D)	0.429 ± 0.082	0.469 ± 0.084	0.440 ± 0.058

Isospin constrained

FPCP 2012 @ Hefei 2012

Systematic Uncertainties

Correlation between
 R(D) and R(D*)

 $R(D^*)$

3.7

2.5

2.7

1.6

5.3

9.0

0.62

-0.48

-0.30

0.22

0.05

-0.2

Uncertainty (%)

R(D)

5.8

5.0

4.9

2.6

9.5

13.1

16.2

Principal Uncertainties:

- D^{**} v: conservative 15% constraints and fit to Dπ sample,
- Limited MC signal samples 2-dim PDFs with ~2000 events
- Continuum and BB background Corrections and MC statistics

Largest errors are Gaussian distributed!

Results of fit to D** I nu control sample for the sum of the 4 channels:

 $D^{0}\pi^{0} |\nu,, D^{*0}\pi^{0} \ell \nu, \\D^{*}\pi^{0} |\nu,, D^{*+}\pi^{+} \ell \nu,$

Source

 $D^{**}\ell\nu$ background

Cont. and $B\overline{B}$ bkg.

Total uncertainty

Systematic uncertainty

Statistical uncertainty

MC statistics

 $\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$

$D\pi^0 \ell v$ Control Sample

Summary of R(D) and R(D*) Measurement

to be submitted to PRL

Decay	$N_{ m sig}$	$N_{ m norm}$	$R(D^{(*)})$	$\mathcal{B}(B \to D^{(*)}\tau\nu)(\%)$	$\Sigma_{\rm tot}(\sigma)$
$D^0 \tau^- \overline{\nu}_{\tau}$	314 ± 60	1995 ± 55	$0.429 \pm 0.082 \pm 0.052$	$0.99 \pm 0.19 \pm 0.13$	4.7
$D^{*0}\tau^-\overline{\nu}_{\tau}$	639 ± 62	8766 ± 104	$0.322 \pm 0.032 \pm 0.022$	$1.71 \pm 0.17 \pm 0.13$	9.4
$D^+ \tau^- \overline{\nu}_{\tau}$	177 ± 31	986 ± 35	$0.469 \pm 0.084 \pm 0.053$	$1.01 \pm 0.18 \pm 0.12$	5.2
$D^{*+}\tau^-\overline{\nu}_{\tau}$	245 ± 27	3186 ± 61	$0.355 \pm 0.039 \pm 0.021$	$1.74 \pm 0.19 \pm 0.12$	10.4
$D\tau^-\overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	$0.440 \pm 0.058 \pm 0.042$	$1.02 \pm 0.13 \pm 0.11$	6.8
$D^*\tau^-\overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	$0.332 \pm 0.024 \pm 0.018$	$1.76 \pm 0.13 \pm 0.12$	13.2

Comparison with SM calculation:

	R(D)	R(D*)
BABAR	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2.7 σ

The combination of the two measurements (-0.27 correlation) yields χ^2 /NDF=14.6/2, i.e. Prob. = 6.9 x10⁻⁴ !!

Thus the SM prediction is excluded at 3.4 σ

BABAR

R(D*)

Comparison to Previous Measurements

The new measurements are fully compatible with earlier results!

Can we explain the excess events?

• A charged Higgs (2HDM type II) of spin 0 couples to the τ and will only affect H_t

$$H_t^{\text{2HDM}} = H_t^{\text{SM}} \times \left(1 \left(\frac{\tan^2 \beta}{m_{H^{\pm}}^2} \frac{q^2}{1 \mp m_c/m_b} \right) - \text{for } \mathsf{D}\tau \mathsf{v} + \text{for } \mathsf{D}^* \tau \mathsf{v} \right)$$

This could enhance or decrease the ratios $R(D^*)$ depending on tan β/m_H

- We estimate the effect of 2DHM, accounting for difference in efficiency, and its uncertainty
- The data match 2DHM Type II at $tan\beta/m_{H}= 0.44 \pm 0.02$ for R(D) $tan\beta/m_{H}= 0.75 \pm 0.04$ for R(D*)
- However, the combination of R(D) and R(D*) excludes the Type II 2HDM in the full tanβ-m_H parameter space with a probability of >99.8%, provided M_H>10GeV !

- Studies of semileptonic decays have been challenging for both theory and experiment.
- Current measurements are based on the full BABAR and Belle data
- At present, there are two interesting puzzles:
 - The "tension" between inclusive and exclusive analyses remains, while stated uncertainties on BF and |V_{ub}| and |V_{cb}| are being reduced.
 - The search for non-SM B decay rates has revealed a significant excess

 (3.4 σ) of events in B→Dτν and B→D*τν. This feature cannot be explained by contributions expected from a 2DHM Higgs of Type II.
- To solve these puzzles, we need
 - more data expected from LHCb and future B Factories
 - continued close collaboration between experimenters and theorists!

