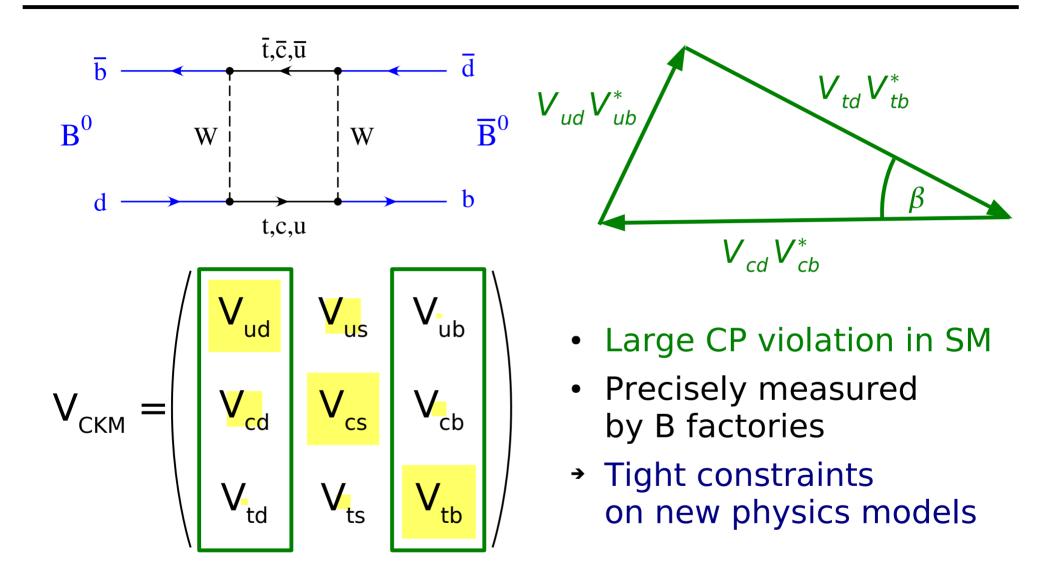
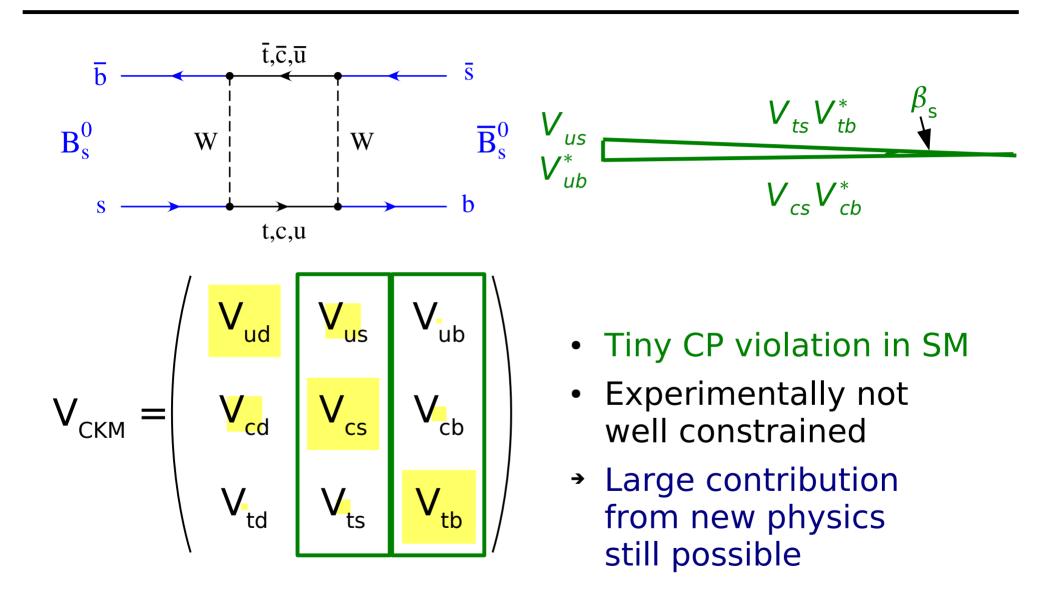
B_s Physics


Thomas Kuhr

for the CDF, D0, and Belle collaborations

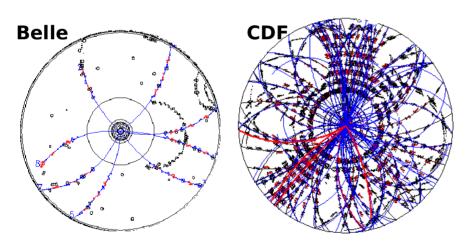

PIC 2010 02.09.2010

B^o System

B_s System

• Schrödinger equation:

$$i\frac{d}{dt}\left(\frac{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}\right) = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right)\left(\frac{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}\right)$$

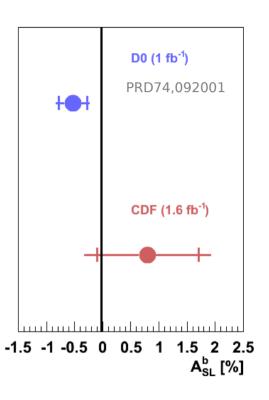

> Eigenstates with defined mass and lifetime:

$$|B_{sL}\rangle = p |B_s\rangle + q |\bar{B}_s\rangle |B_{sH}\rangle = p |B_s\rangle - q |\bar{B}_s\rangle$$

- → Mass difference: $\Delta m = m_{H} m_{L} \approx 2|M_{12}| \rightarrow oscillation$
- → Lifetime difference: $\Delta \Gamma = \Gamma_{L} \Gamma_{H} \approx 2 |\Gamma_{12}| \cos(\phi)$
- → Phase: $\phi \approx \arg(-M_{12}/\Gamma_{12}) \rightarrow CP$ violation

"B_s Factory" Tevatron

- → Huge bb cross section (strong interaction)
- \rightarrow B_s produced in fragmentation
- *x* High combinatorial background

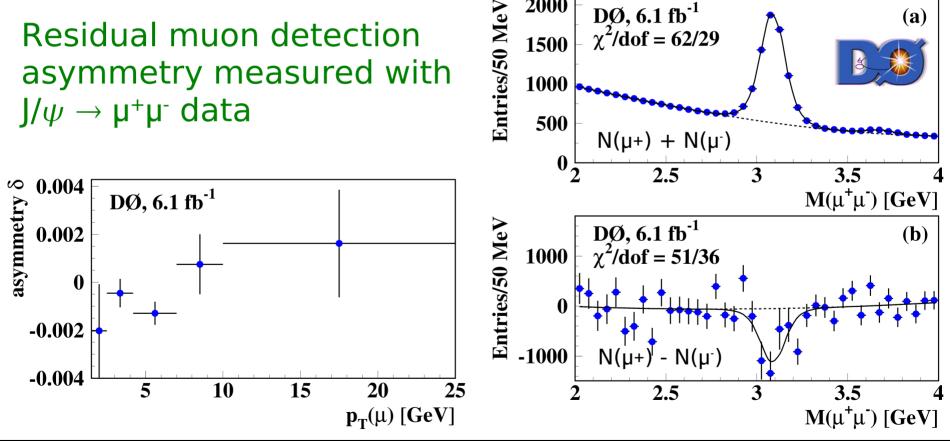

- Inelastic cross section
 ~10³ times larger
 than σ(bb)
- Triggers are essential
 - Dimuons (CDF, D0)
 - Single muons (D0)
 - Displaced tracks (CDF)

CP Violation in Semileptonic Decays

- CP violation in mixing (no direct CPV):
- Semileptonic charge asymmetry:

 $a_{SL}^b = \frac{\Gamma(\bar{B} \to B \to \mu^+ X) - \Gamma(B \to \bar{B} \to \mu^- X)}{\Gamma(\bar{B} \to B \to \mu^+ X) + \Gamma(B \to \bar{B} \to \mu^- X)}$

→ Like-sign dimuon charge asymmetry: $A^b_{SL} = \frac{\Gamma(B\bar{B} \to \mu^+ \mu^+ X) - \Gamma(B\bar{B} \to \mu^- \mu^- X)}{\Gamma(B\bar{B} \to \mu^+ \mu^+ X) + \Gamma(B\bar{B} \to \mu^- \mu^- X)}$


- CPT conservation: $a_{SL}^{b} = A_{SL}^{b}$
- $a_{SL}^{b} = (0.506 \pm 0.043) a_{SL}^{d} + (0.494 \pm 0.043) a_{SL}^{s}$
- $a_{SL} = |\Gamma_{12}|/|M_{12}| \sin(\phi) = \Delta\Gamma/\Delta m \tan(\phi)$
- SM expectation [JHEP0706,072]: $a_{SL}^{b} = (-2.3 + 0.5) \times 10^{-4}$

- S muons: b/c hadrons, J/ ψ , η , ω , τ , etc. L muons: decay in flight π /K, fake π /K/p
- Single muon sample (1.5 x 10⁹ events):
 - Measure $a = (n^+ n^-) / (n^+ + n^-)$
 - Correct for L muons and detection asymmetry $\rightarrow a_s$
 - Correct for non B \rightarrow µX decays: $a_{SL}^{b} = a_{S}^{c} / (0.070 \pm 0.006)$
- Dimuon sample (3.6 x 10⁶ events):
 - Measure A = $(N^{++} N^{--}) / (N^{++} + N^{--})$
 - Correct for L muons and detection asymmetry $\rightarrow A_s$
 - Correct for non B \rightarrow µX decays: A_{SL}^b = A_S / (0.486 ± 0.032)
- Improved result by combination of a and A

Muon Identification Asymmetry

- Asymmetry and systematic uncertainty reduced by regular x 10² reversal of magnet polarity
- Residual muon detection asymmetry measured with $J/\psi \rightarrow \mu^+\mu^-$ data

2000

1500

Thomas Kuhr

CP

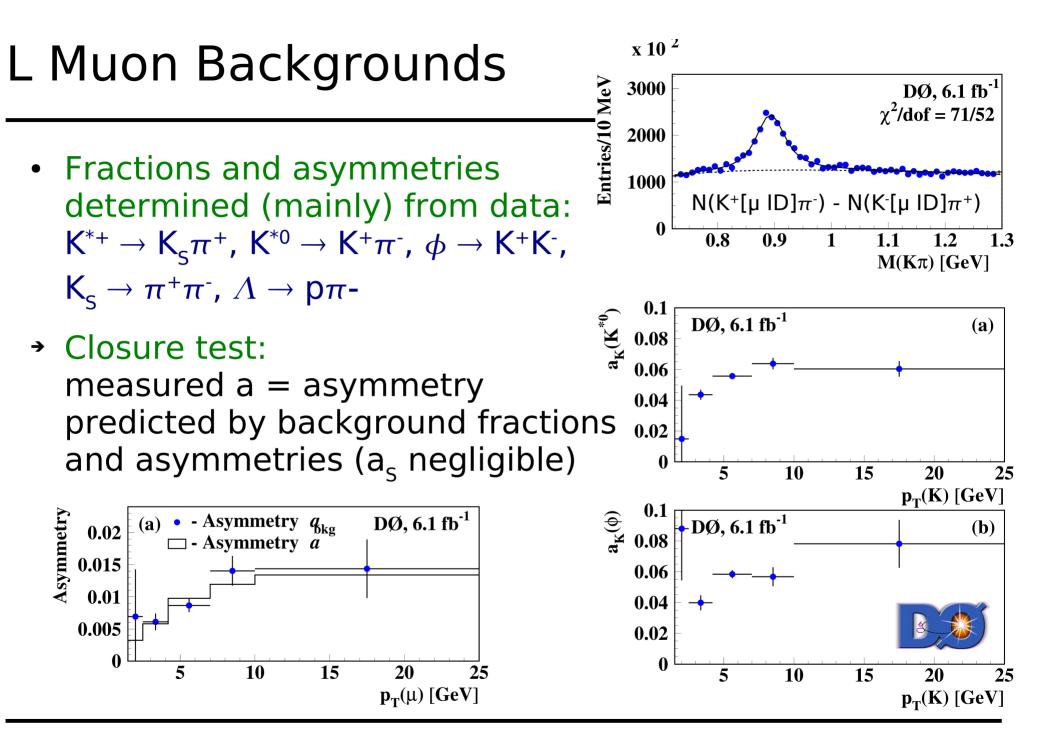
хB

ΘB

(a)

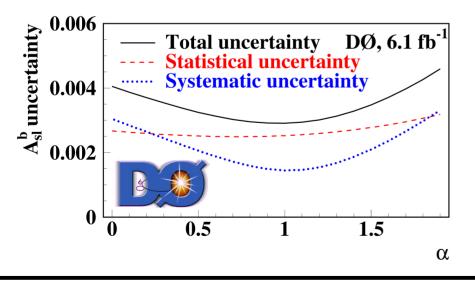
 \overline{p}

• B


(x) B

DØ, 6.1 fb⁻¹

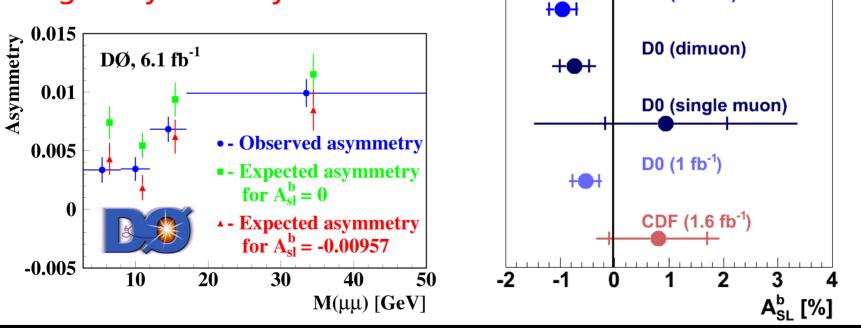
 $\chi^2/dof = 62/29$


magnet polarity

p

Non $B \rightarrow \mu X$ Correction and Combination

- Non B→µX correction factor (assuming a_{non-B}=0) from MC:
 - $a_s: 0.070 \pm 0.006$
 - A_s: 0.486 ± 0.032
- Background uncertainties (partially) cancel in A α a

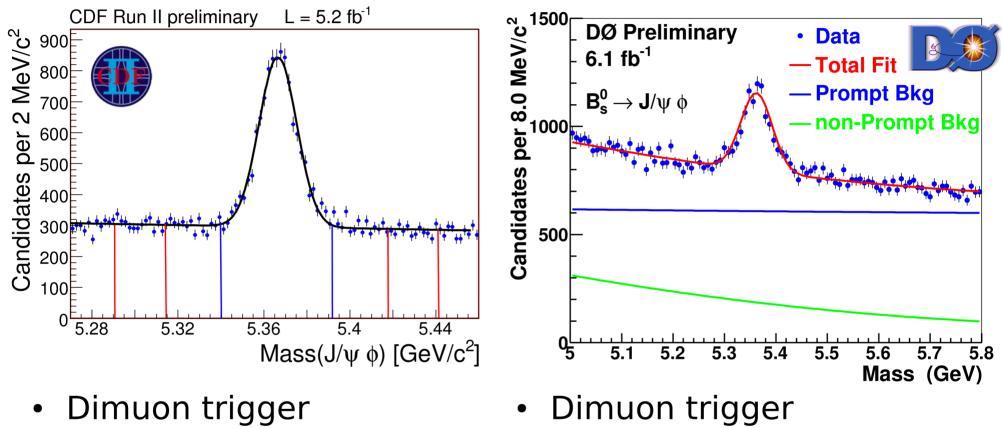


	I	Process	Weight
	T_1 b	$p \to \mu^- X$	$w_1 \equiv 1.$
•	T_{1a}	$b \to \mu^- X \pmod{100}$	$w_{1a} = (1 - \chi_0) w_1$
•	T_{1b}	$\bar{b} \to b \to \mu^- X \text{ (osc)}$	$w_{1b} = \chi_0 w_1$
	T_2 b	$p \to c \to \mu^+ X$	$w_2 = 0.113 \pm 0.010$
	T_{2a}	$b \to c \to \mu^+ X \pmod{1}$	$w_{2a} = (1 - \chi_0) w_2$
		$\bar{b} \to b \to c \to \mu^+ X \text{ (osc)}$	$w_{2b} = \chi_0 w_2$
	T_3 b	$p \to c\bar{c}q$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_3 = 0.062 \pm 0.006$
	$T_4 r_1$	$\eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+ \mu^-$	$w_4 = 0.021 \pm 0.001$
	T_5 b	$b\bar{b}c\bar{c}$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_5 = 0.013 \pm 0.002$
	T_6 c	$c\bar{c}$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_6 = 0.660 \pm 0.077$

C			
Source	From a	From A	From $A - \alpha a$
A or a (stat)	0.00066	0.00159	0.00179
f_K or F_K (stat)	0.00222	0.00123	0.00140
$P(\pi \rightarrow \mu)/P(K \rightarrow \mu)$	0.00234	0.00038	0.00010
$P(p \rightarrow \mu)/P(K \rightarrow \mu)$	0.00301	0.00044	0.00011
A_K	0.00410	0.00076	0.00061
A_{π}	0.00699	0.00086	0.00035
A_p	0.00478	0.00054	0.00001
$\delta \text{ or } \Delta$	0.00405	0.00105	0.00077
f_K or F_K (syst)	0.02137	0.00300	0.00128
π, K, p multiplicity	0.00098	0.00025	0.00018
c_b or C_b	0.00080	0.00046	0.00068
Total statistical	0.01118	0.00266	0.00251
Total systematic	0.02140	0.00305	0.00146
Total	0.02415	0.00405	0.00290
	0.02.110	0.00100	0.00200

Result

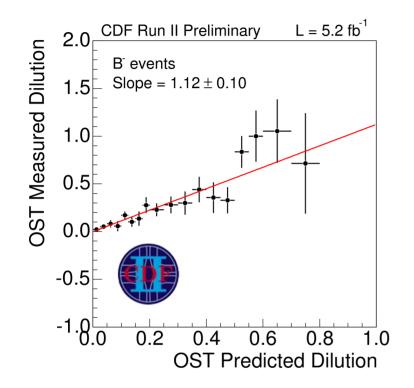
- Single muon: $A_{SI}^{b} = (+0.94 \pm 1.12 \pm 2.14) \%$
- Dimuon: $A_{SL}^{b} = (-0.736 \pm 0.266 \pm 0.305) \%$
- → Combination: $A_{SL}^{b} = (-0.957 \pm 0.251 \pm 0.146)$ % 032001 (stable against selection variations)
- Solution > 3.2 σ from SM → Evidence for anomalous like-sign dimuon charge asymmetry
 D0 (6.1 fb⁻¹)

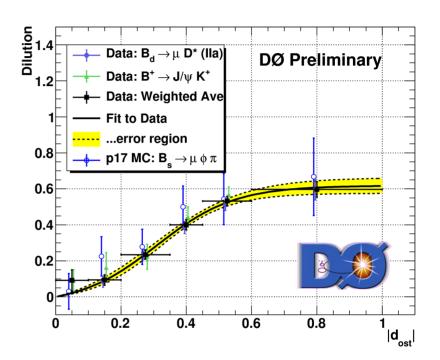

PRL 105,

081801

CP Violation in $B_s \rightarrow J/\psi \phi$

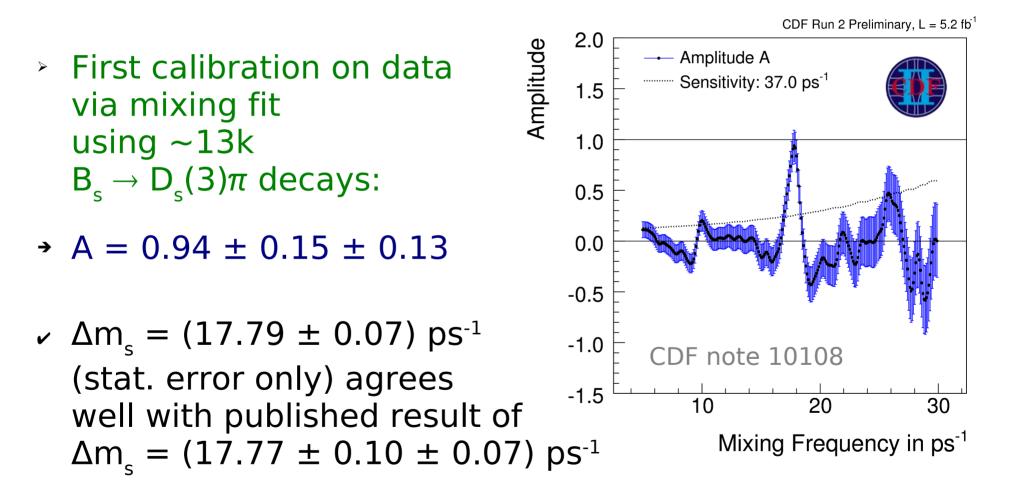
- Time dependent asymmetry of decay to CP eigenstate: $A_{CP}(t) = \frac{\Gamma(\bar{B}_s^0 \to f_{CP}) - \Gamma(B_s^0 \to f_{CP})}{\Gamma(\bar{B}_s^0 \to f_{CP}) + \Gamma(B_s^0 \to f_{CP})} \approx \pm \sin(\phi_s) \sin(\Delta m_s t)$
- * Requires resolution of oscillations and flavor tagging
- → Golden mode: $B_s \rightarrow J/\psi \phi$
 - Mixture of CP eigenstates
- x Requires angular analysis
- Additional sensitivity to CP violation via interference of CP-even/odd components (mass ES ≠ CP ES)
- Mass ES can be identified if $\Delta \Gamma \neq 0 \rightarrow$ untagged analysis


Data Samples


- 5.2 fb⁻¹
- Signal yield: ~6500

- 6.1 fb⁻¹
- Signal yield: ~3400

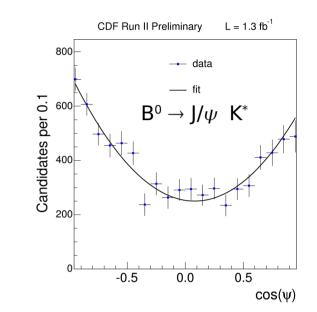
Flavor Tagging (Opposite Side)

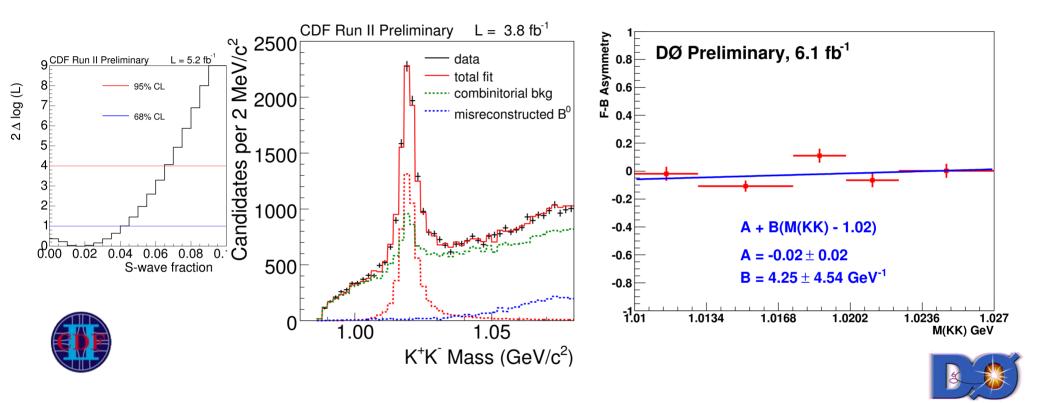

- Electron, muon, and jet charge
- Combined with NN
- Calibrated on B⁺ data

- Electron, muon, vertex, and event charge
- Combined with LHR
- Calibrated on B⁺ and B⁰ data

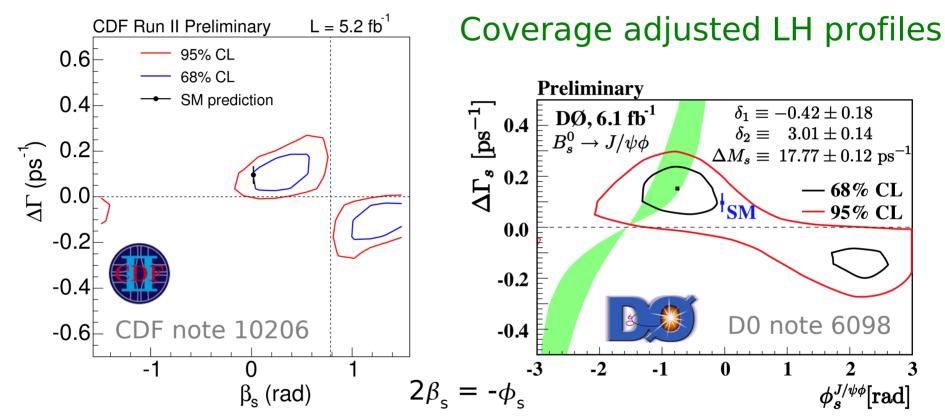
Flavor Tagging (Same Side)

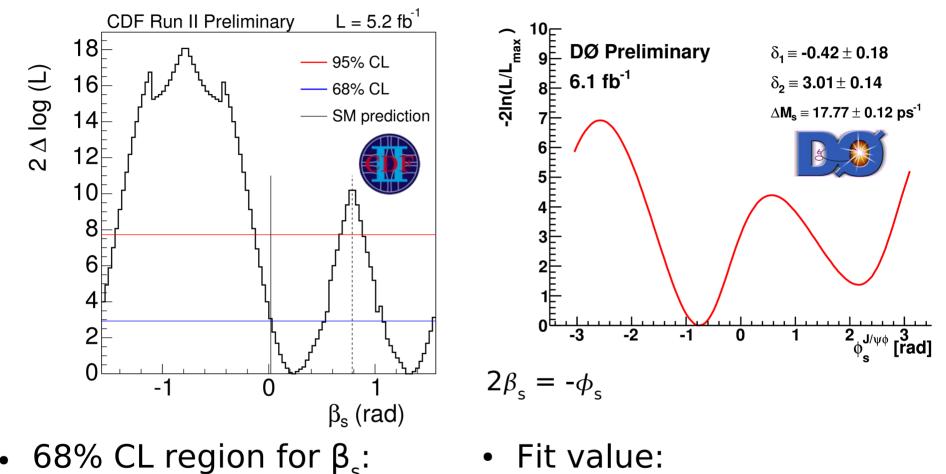
Same Side Kaon Tagger (as used for B_s mixing observation)




S-Wave Contamination

- $B_s \rightarrow J/\psi f_0 (f_0 \rightarrow K^+K^-)$ or $B_s \rightarrow J/\psi K^+K^-$ (non-resonant) components could be present in data
- → Would affect the angular distribution: Forward-backward asymmetry in $\cos(\psi)$ (observed for B⁰ → J/ ψ K^{*})
 - x Bias of fit result


- CDF: Include S-wave component in fit
- D0: Measure FB asymmetry


→ Fitted S-wave contribution
 → FB asymmetry consistent with 0
 → FB asymmetry consistent with 0

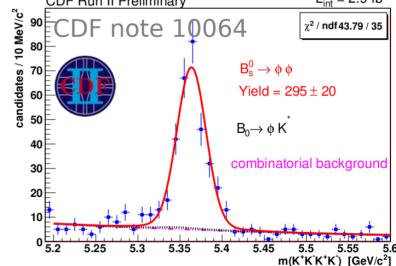
Results (2D)

- D0: Constrain strong phases to the ones of $B^0 \rightarrow J/\psi K^*$ (motivated by agreement of amplitudes)
- → Resolves ambiguity, removes fit bias \rightarrow point estimate

Results (1D)

- [0.02,0.52] U [1.08,1.55]
- Fit value: $\phi_s = -0.76 + 0.38 \pm 0.02$
- Results of both experiments agree with the SM

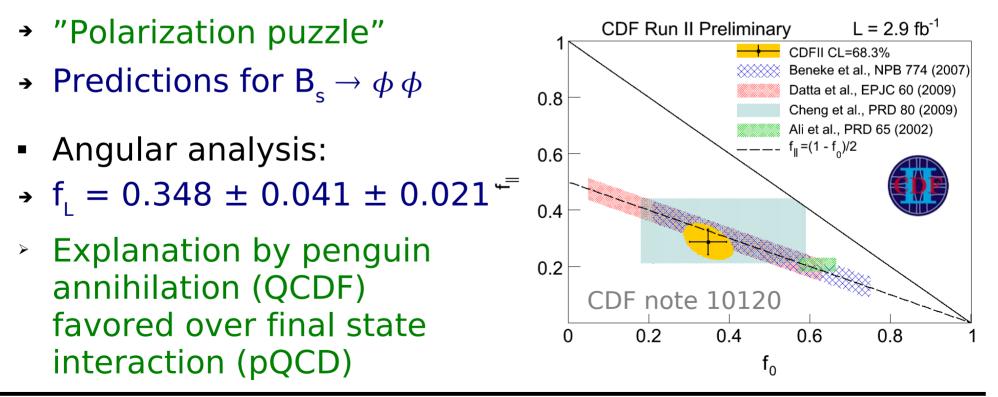
Further Point Estimates


- Fit assuming no CP violation (fixed $\beta_s = 0$):
- $\tau_s [ps] =$ 1.530 ± 0.025 ± 0.012
- $\Delta\Gamma_{s} [ps^{-1}] =$ 0.075 ± 0.035 ± 0.01
- $|A_{||}(0)|^2 =$ 0.231 ± 0.014 ± 0.015
- $|A_0(0)|^2 =$ 0.524 ± 0.013 ± 0.015
- $\phi_{\perp} = 2.95 \pm 0.64 \pm 0.07$
- Most precise measurements

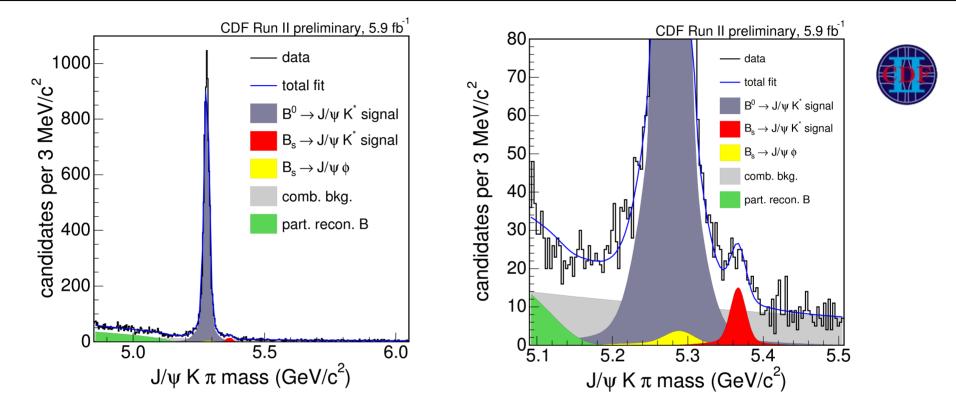
- Fit with constrained strong phases and $\phi_{\rm s}$ floating:
- $\tau_s [ps] =$ 1.47 ± 0.04 ± 0.01
- $\Delta\Gamma_{s} [ps^{-1}] =$ 0.15 ± 0.06 ± 0.01
- $A_{\perp}(0) =$ 0.44 ± 0.03 ± 0.01
- $|A_0(0)|^2 |A_{||}(0)|^2 = 0.35 \pm 0.03$

$\mathsf{B}_{\mathsf{s}} \to \phi \, \phi$

- $b \rightarrow s$ penguin dominated
- Null prediction for mixing induced CP violation in SM
- → Comparison of $b \rightarrow c\bar{c}s$ and $b \rightarrow s\bar{s}s$ in B_s system (some discrepancy in B^0 system)
- Next step: polarization measurement on same data sample

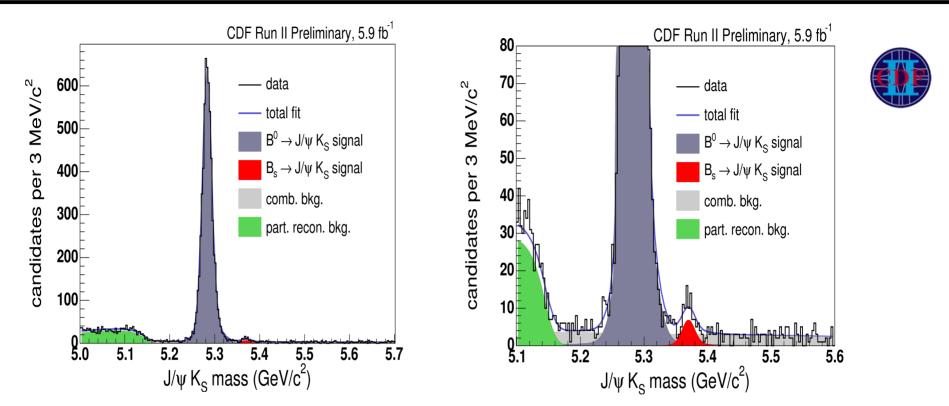


u, c, t

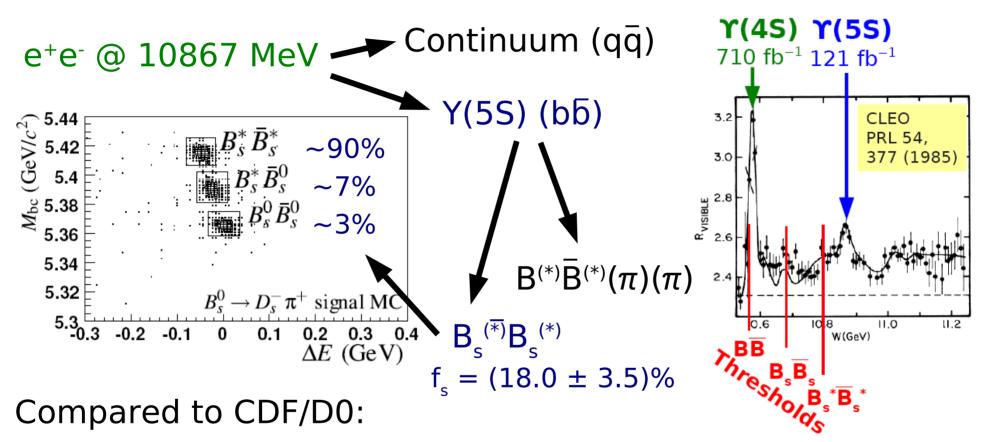

 $\overline{\mathbf{s}}$

$\rm B_s^{} \rightarrow \phi \, \phi$ Polarization

- Expectation from V-A nature of weak interaction and helicity conservation:
 - Dominantly longitudinal polarization: $|A_0| \gg |A_{11}| \approx |A_1|$
 - Confirmed in tree level $\mathsf{B}^{\scriptscriptstyle 0}$ decays, violated in $\mathsf{B}^{\scriptscriptstyle 0} \to \phi \:\mathsf{K}^*$

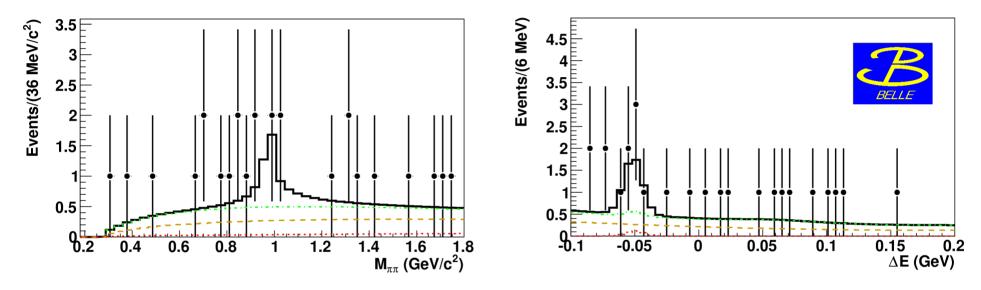


$B_s \rightarrow J/\psi K^*$



- Yield: 151 ± 25, significance: $8\sigma \rightarrow First \ observation$
- → BR(B_s → J/ ψ K^{*}) [normalized to B⁰ → J/ ψ K^{*}] = (8.3 ± 1.2 (stat) ± 3.3 (sys) ± 1.0 (frag) ± 0.4 (PDG)) × 10⁻⁵
- > Sensitive to hadronic terms entering $B_s \rightarrow J/\psi \phi$ observables

${\sf B}_{\sf s} ightarrow {\sf J}/\psi \; {\sf K}_{\sf S}$


- Yield: 64 ± 14, significance: $7.2\sigma \rightarrow \text{First observation}$
- → BR(B_s → J/ ψ K⁰) [normalized to B⁰ → J/ ψ K_s] = (3.5 ± 0.6 (stat) ± 0.4 (sys) ± 0.4 (frag) ± 0.1 (PDG)) × 10⁻⁵
- > CP eigenstate \rightarrow direct measurement of $\Gamma_{\rm H}$ (in SM)

- Absolute BR measurements possible
- ✓ Reconstruction of neutrals (γ , π^{0}), better PID
- x Vertex resolution / boost insufficient to resolve oscillations

 $B_{s} \rightarrow J/\psi f_{0}$

≻ CP eigenstate → sensitive to CPV w/o angular analysis

- → Yield in 23.6 fb⁻¹: 6.0 ± 4.0 (1.6 σ)
- → BR(B_s → J/ ψ f₀)BR(f₀ → $\pi^+\pi^-$) < 1.63 x 10⁻⁴ @ 90% CL
- Predictions: Extrapolation from $B_s \rightarrow J/\psi \ \phi$ (PRD 79, 074024): (1.3 - 2.7) x 10⁻⁴ QCD@LO (PRD 81, 074001): (1.6 ± 1.3) x 10⁻⁴

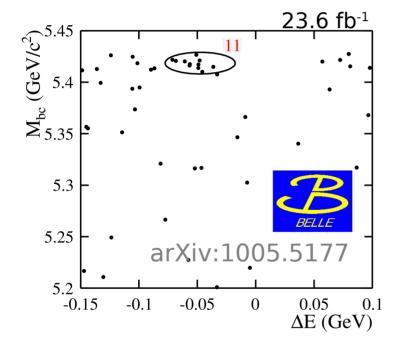
$B_s \rightarrow D_s^{(*)} D_s^{(*)}$

- Cabibbo favored decay, predominantly CP even
- $\rightarrow \ \Delta \Gamma_{\rm CP} = \Gamma^{\rm even} \Gamma^{\rm odd} \approx \Gamma(\mathsf{D}_{\rm s}^{\ (*)} \ \mathsf{D}_{\rm s}^{\ (*)}) \quad (\ \Delta \Gamma = \Delta \Gamma_{\rm CP} \ \mathsf{COS}\phi \)$

• 8.5 $^{+3.2}_{-2.6}$ (6.2 σ) B $_{c} \rightarrow$ D $_{c}$ D $_{c}$

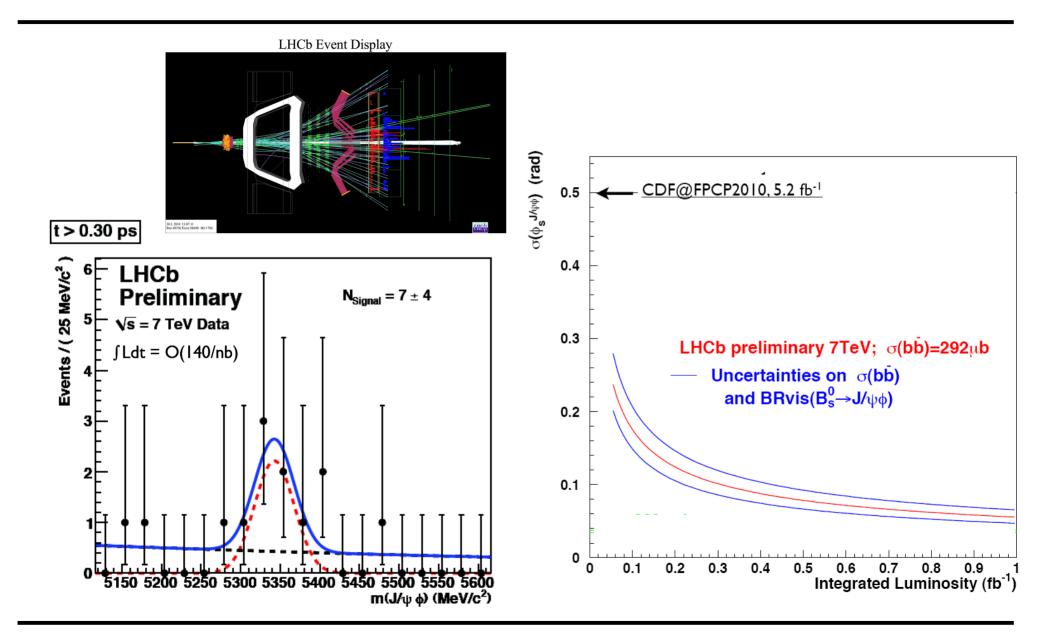
• 9.2 $^{+2.8}_{-2.4}$ (6.6 σ) B_s \rightarrow D_s^{*} D_s

BR = $(2.8 + 0.8)_{-0.7} \pm 0.7)$ %


• 4.9 $^{+1.9}_{-1.7}$ (3.2 σ) B_c \rightarrow D_c^{*} D_c^{*}

BR = $(3.1 + 1.0 \pm 0.8)$ %

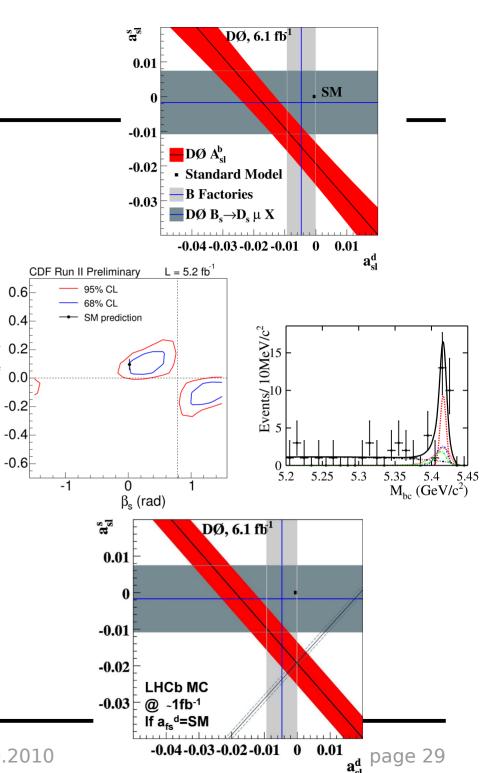
BR = (1.0 + 0.4 + 0.3) %


 \rightarrow first observation

 \rightarrow first evidence

- → $\Delta \Gamma_{\rm CP} / \Gamma = (14.7 + 3.6 + 4.4) \%$
- D0 [PRL 102,091801]: (7.2 ± 2.1 ± 2.2) %,
- SM prediction [JHEP 0706:072]: (12.7 ± 2.4) %

LHCb



PIC2010, 02.09.2010

Market Thomas Kuhr

Summary

- Large NP effects may still be present in the B_s system
- Like-sign dimuon charge asymmetry measured by D0 is ~3\sigma away from the SM
- > Updated measurements of CP violation in B_s → J/ψ φ agree with the SM
- → Tevatron rules B_s physics
- Belle provides valuable complementary results
- LHCb has started to catch up

PIC2010, 02.09.2010

 $\Delta \Gamma (ps^{-1})$