Heavy Flavor Theory
 Benjamin Grinstein

Motivation: Bottom-up approach

Assume existence of New Physics (NP) at short distances, no specific model

NP not directly accessible to experiment (yet): effects appear indirectly as modifications to interactions among SM particles

Supplement SM lagrangian with terms of dimension higher than four ("higher dimension operators") as allowed by Lorentz Invariance and gauge symmetries.

A term of dimension $n>4$ appears in the lagrangian with coefficient $c / \Lambda_{\mathrm{NP}}^{n-4} \quad($ with $c \sim 1$)
Hence low energy effects are suppressed by powers of Λ_{NP}
(just a generic form of the effective field theory of the top-down approach)

Advantages of bottom-up approach:
fairly general, encompasses many (all?) realistic extensions of SM (model independent)
few parameters

Disadvantages:
no clear correlation between long $\left(\mathrm{GeV}^{-1}\right)$ and very short $\left(\mathrm{TeV}^{-1}\right)$ distances

In this talk I will avoid translation of bounds into explicit models (typically SUSY)

Flavor problem

The EFT (either approach) generically contains terms that mediate $\Delta F=2$ or FCNC decays at tree level and suppressed only by $c / \Lambda_{\mathrm{NP}}^{n-4} \quad$ (with $c \sim 1$)
with $n-4=2$ this requires Λ_{NP} in excess of $10^{4} \mathrm{TeV}$ from, e.g., K-mixing

Flavor problem

The EFT (either approach) generically contains terms that mediate $\Delta F=2$ or FCNC decays at tree level and suppressed only by $c / \Lambda_{\mathrm{NP}}^{n-4}$ (with $c \sim 1$)
with $n-4=2$ this requires Λ_{NP} in excess of $10^{4} \mathrm{TeV}$ from, e.g., K-mixing

$$
\begin{gathered}
\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left[z_{1}^{K}\left(\overline{d_{L}} \gamma_{\mu} s_{L}\right)\left(\overline{d_{L}} \gamma^{\mu} s_{L}\right)+z_{1}^{D}\left(\overline{u_{L}} \gamma_{\mu} c_{L}\right)\left(\overline{u_{L}} \gamma^{\mu} c_{L}\right)+z_{4}^{D}\left(\overline{u_{L}} c_{R}\right)\left(\overline{u_{R}} c_{L}\right)\right] \\
\left|z_{1}^{K}\right| \leq z_{\exp }^{K}=8.8 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} \\
\left|z_{1}^{D}\right| \leq z_{\exp }^{D}=5.9 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} \\
\mathcal{I} m\left(z_{1}^{K}\right) \leq z_{\exp }^{I K}=3.3 \times 10^{-9}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} \\
\mathcal{I} m\left(z_{1}^{D}\right) \leq z_{\exp }^{I D}=1.0 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}
\end{gathered}
$$

Plan of the Talk

- Introduction with review of CKM theory
- Purely leptonic decays
- $B \bar{B}$ mixing: $\left|V_{t d}\right| ; D \bar{D}$ mxing
- Towards a precision determination of $\left|V_{c b}\right|,\left|V_{u b}\right|$
- Progress in Rare B Decays

Goal of heavy quark physics: constrain models of new physics, verify with precision $\mathrm{SM}+\mathrm{CKM}$

Plan of the Talk

- Introduction with review of CKM theory
- Purely leptonic decays
- $B \bar{B}$ mixing: $\left|V_{t d}\right| ; D \bar{D}$ mxing
- Towards a precision determination of $\left|V_{c b}\right|,\left|V_{u b}\right|$
- Progress in Rare B Decays

I am sorry I have to leave out many interesting topics (with apologies to speakers in parallel sessions): CPV/angles, two body hadronic decays, $\sin 2 \beta$ determinations from sss penguins (vs ccs trees), heavy flavor at LHC, explicit BSM theories of/with flavor, ...

The CKM Matrix

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- Frequently used Wolfenstein parametrization: four parameters $\lambda, A, \bar{\rho}, \bar{\eta}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda\left(1+i A^{2} \lambda^{4} \bar{\eta}\right) & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2}\left(1+i \lambda^{2} \bar{\eta}\right) & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{6}\right) .
$$

- CKM Unitarity triangle

- Sides give circles in $z=\bar{\rho}+i \bar{\eta}$

The CKM Matrix

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- Frequently used Wolfenstein parametrization: four parameters $\lambda, A, \bar{\rho}, \bar{\eta}$

$$
V_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda\left(1+i A^{2} \lambda^{4} \bar{\eta}\right) & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2}\left(1+i \lambda^{2} \bar{\eta}\right) & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{6}\right) .
$$

- CKM Unitarity triangle

- Sides give circles in $z=\bar{\rho}+i \bar{\eta}$
- Angles give

Consistency check of CKM theory: global fit

Consistency check of CKM theory: global fit

Why care about anything other than $\sin 2 \beta$ and $\Delta m_{d} / \Delta m_{s}$?

Consistency check of CKM theory: global fit

Why care about anything other than $\sin 2 \beta$ and $\Delta m_{d} / \Delta m_{s}$?
tree vs loop: disentangling new physics form old (orthodoxy: NP enters only at loop level)

Electroweak tree level

EW loop processes

Electroweak tree level

EW loop processes

Consistency !?

Progress and Puzzles in Purely Leptonic B and D Decays

Theory? B/D decay constants

$$
\Gamma\left(D_{s} \rightarrow \ell v_{\ell}\right)=\frac{m_{D_{s}}}{8 \pi} f_{D_{s}}^{2}\left|G_{F} V_{c s}^{*} m_{\ell}\right|^{2}\left(1-m_{\ell}^{2} / m_{D_{s}}^{2}\right)^{2}
$$

HPQCD/exp
discrepancy
greater than 3σ

New Physics?

- s-channel charged higgs exchange, with $y_{s}<y_{c}$ and $y_{c}, y_{\tau} \sim 1$: disfavored by D decay data
- t-channel charge $+2 / 3$ leptoquark exchange; disfavored by bound on $\tau \rightarrow \mu s s$
- u-channel charge $-1 / 3$ leptquark exchange (like d-squark)

$$
\mathscr{L}_{\mathrm{LQ}}=\kappa_{2 \ell}\left(\bar{c}_{L} \ell_{L}^{c}-\bar{s}_{L} v_{l L}^{c}\right) \tilde{d}+\kappa_{2 \ell}^{\prime} \bar{c}_{R} \ell_{R}^{c} \tilde{d}+\text { H.c. }
$$

$B \rightarrow \tau \nu$

Tension between $\sin 2 \beta$ and $\operatorname{Br}(B \rightarrow \tau \nu)$:
global fit without using these measurements, cross is from experimental values (1σ)

Shape of correlation best understood from ratio:
$\frac{\operatorname{Br}(B \rightarrow \tau \nu)}{\Delta m_{d}}=\frac{3 \pi m_{\tau}^{2}}{4 m_{W}^{2} S\left(x_{t}\right)}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} \tau_{B_{+}} \frac{1}{\left|V_{u d}\right|^{2} B_{B_{d}}}\left(\frac{\sin \beta}{\sin \gamma}\right)^{2}$

$B \rightarrow \tau \nu, B \rightarrow X_{c} \tau \nu$

Sensitive to charged higgs exchange. Normalize to non-tau

$\operatorname{Br}(B \rightarrow \tau \nu)=\left(1.79_{-0.49-0.46}^{+0.56+0.39}\right) \times 10^{-4}$

$$
\operatorname{Br}(B \rightarrow \tau \nu X)=(2.48 \pm 0.26) \times 10^{-2}
$$

[Hou; Isidori]

$$
\tan \beta=\frac{v_{2}}{v_{1}}
$$

$$
r=\frac{\tan \beta}{M_{H^{ \pm}}}
$$

Neutral Meson Mixing: generalities

time evolution: $\quad i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\left|P^{0}(t)\right\rangle}{\left|\bar{P}^{0}(t)\right\rangle}=\left(M-\frac{i}{2} \Gamma\right)\binom{\left|P^{0}(t)\right\rangle}{\left|\bar{P}^{0}(t)\right\rangle}$

$$
m=\frac{m_{H}+m_{L}}{2}, \quad \Gamma=\frac{\Gamma_{H}+\Gamma_{L}}{2}
$$

solution: $\quad\left|P_{L, H}\right\rangle=p\left|P^{0}\right\rangle \pm q\left|\bar{P}^{0}\right\rangle$
with:

$$
\Delta m=m_{H}-m_{L}, \quad \Delta \Gamma=\Gamma_{H}-\Gamma_{L}
$$

$$
\left|P_{L, H}(t)\right\rangle=e^{-\left(i m_{L, H}+\Gamma_{L, H} / 2\right) t}\left|P_{L, H}\right\rangle
$$

$$
\begin{aligned}
(\Delta m)^{2}-\frac{(\Delta \Gamma)^{2}}{4} & =4\left|M_{12}\right|^{2}-\left|\Gamma_{12}\right|^{2}, \\
\Delta m \Delta \Gamma & =4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right), \\
\frac{q^{2}}{p^{2}} & =\frac{2 M_{12}^{*}-i \Gamma_{12}^{*}}{2 M_{12}-i \Gamma_{12}} .
\end{aligned}
$$

Decay amplitudes: $\quad A_{f}=\langle f| \mathcal{H}\left|P^{0}\right\rangle, \quad \bar{A}_{f}=\langle f| \mathcal{H}\left|\bar{P}^{0}\right\rangle$

Cases

$\Delta m \gg|\Delta \Gamma|$ (e.g., for $B_{d, s}$)

$$
\begin{aligned}
\Delta m & =2\left|M_{12}\right|\left(1+\mathcal{O}\left(\Gamma_{12} / M_{12}\right)\right) \\
\Delta \Gamma & =-2\left|\Gamma_{12}\right| \cos \phi_{12}\left(1+\mathcal{O}\left(\Gamma_{12} / M_{12}\right)\right)
\end{aligned}
$$

- ϕ_{12} suppressed in $\mathrm{SM}(\mathrm{Bd}, \mathrm{s})$
- NP can only reduce $|\Delta \Gamma|$
- $q / p=-\arg \left(M_{12}\right)(1+\ldots)$ so time dependent CP asymmetries sensitive no NP in M_{12}

$$
\Delta m=2\left|M_{12} \cos \phi_{12}\right|\left(1+\mathcal{O}\left(M_{12} / \Gamma_{12}\right)\right)
$$

$\Delta m \ll|\Delta \Gamma|$

$$
\Delta \Gamma=\mp 2\left|\Gamma_{12}\right|\left(1+\mathcal{O}\left(M_{12} / \Gamma_{12}\right)\right)
$$

- $q / p=-\arg \left(\Gamma_{12}\right)(1+\ldots)$ depends weakly on M_{12}
- if $\Delta m \ll|\Delta \Gamma|$ and no CPV in D decay

$$
\arg \lambda_{K^{+} K^{-}} \propto 2\left|\frac{M_{12}}{\Gamma_{12}}\right|^{2} \sin \left(2 \phi_{12}\right) .
$$

- reduced sensitivity to NP in M_{12} (even for dominant NP)

$B \bar{B}$ mixing: $\left|V_{t d}\right|$

Theory: $\quad \frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}=\xi \sqrt{\frac{\Delta m_{s} m_{B_{s}}}{\Delta m_{d} m_{B_{d}}}}$

Lattice: $\xi=1.211 \pm 0.038 \pm 0.024_{\text {estimate }}$
$\xi^{2}=\frac{B_{B_{s}} f_{B_{s}}^{2}}{B_{B_{d}} f_{B_{d}}^{2}}$
I'll believe a 3\% lattice theory error when the lattice has produced one successful prediction and several 3% postdictions However, here the calculation is really of $\xi^{2}-1$, and the error is 16% Chiral lag gives only chiral logs, so error in $\xi^{2}-1 \approx 0.3$ is $\sim 100 \%$

$$
\left\lvert\, \frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}=0.2060 \pm 0.0012(\exp)_{-0.0060}^{+0.0081}(\mathrm{th})\right.
$$

$$
\text { using } \quad \xi=1.210_{-0.035}^{+0.047}
$$

[CDF \& D0: 0905.1109]

$D \bar{D}$ mixing

$\left|V_{c b}\right|:$ inclusive decays $B \rightarrow X_{c} \ell \nu$

- Theory:

Combine Heavy Quark Mass Expansion (HQET) and Operator Product Expansion (OPE) [Chay, Georgi, BG; Voloshin, Shifman; Bigi et al; Manohar, Wise, Bloek et al]

- OPE: expand since m_{b} is larger than any scale in HQET matrix element
- Decay rate for $B \rightarrow X_{c} \ell \nu_{\ell}$

- Γ_{i} given in terms of few non-perturbative parameters + expansion in $\alpha_{s}\left(m_{b}\right)$
- Γ_{0} is free quark decay rate
- $\Gamma_{1}=0$ (Luke's theorem)
- Local quark-hadron duality is mildly used (to show a correction is small)
- Moments of distribution have differing sensitivity to non-perturbative parameters

$\left|V_{c b}\right|:$ inclusive decays $B \rightarrow X_{c} \ell \nu$

- Theory:

Combine Heavy Quark Mass Expansion (HQET) and Operator Product Expansion (OPE) [Chay, Georgi, BG. Voloshin, Shifman; Bigi) et al; Manohar, Wise, Bloek et al]

- OPE: expand since mo is larger than any scale in HQET matrix element
- Decay rate foi $B \rightarrow X_{c} \ell \nu_{\ell}$

Not the same

person

$$
6 \text { parameters }\left\{\begin{array}{ccc}
m_{b} & \lambda_{1} \quad \mathcal{T}_{1,2,3}, \rho_{1} & \longleftarrow \\
m_{b}, m_{c} & \lambda_{1,2} & \rho_{1,2}
\end{array} \begin{array}{l}
\text { With } 1 / m_{c} \text { expansion } \\
\text { No } 1 / m_{c} \text { expansion }
\end{array}\right.
$$

- Γ_{i} given in terms of few non-perturbative parameters + expansion in $\alpha_{s}\left(m_{b}\right)$
- Γ_{0} is free quark decay rate
- $\Gamma_{1}=0$ (Luke's theorem)
- Local quark-hadron duality is mildly used (to show a correction is small)
- Moments of distribution have differing sensitivity to non-perturbative parameters

$\left|V_{c b}\right|:$ inclusive decays $B \rightarrow X_{c} \ell \nu$

- Theory:

Combine Heavy Quark Mass Expansion (HQET) and Operator Product Expansion (OPE) [Chay, Georgi, BG; Voloshin, Shifman; Bigi et al; Manohar, Wise, Bloek et al]

- OPE: expand since m_{b} is larger than any scale in HQET matrix element
- Decay rate for $B \rightarrow X_{c} \ell \nu_{\ell}$

- Γ_{i} given in terms of few non-perturbative parameters + expansion in $\alpha_{s}\left(m_{b}\right)$
- Γ_{0} is free quark decay rate
- $\Gamma_{1}=0$ (Luke's theorem)
- Local quark-hadron duality is mildly used (to show a correction is small)
- Moments of distribution have differing sensitivity to non-perturbative parameters

Moment Analysis

[Falk et al; Kapustin, Ligeti; Gambino, Uraltsev; D. Benson et al; Bauer et al]

Lepton Energy

$$
\left\langle E_{\ell}^{n}\right\rangle_{E_{\mathrm{cut}}} \equiv \frac{R_{n}\left(E_{\mathrm{cut}}, 0\right)}{R_{0}\left(E_{\mathrm{cut}}, 0\right)}
$$

where

$$
R_{n}\left(E_{\mathrm{cut}}, M\right) \equiv \int_{E_{\mathrm{cut}}}\left(E_{\ell}-M\right)^{n} \frac{d \Gamma}{d E_{\ell}} d E_{\ell}
$$

Hadronic Mass

$$
\left\langle m_{X}^{2 n}\right\rangle_{E_{\mathrm{cut}}} \equiv \frac{\int_{E_{\mathrm{cut}}}\left(m_{X}^{2}\right)^{n} \frac{d \Gamma}{d m_{X}^{2}} d m_{X}^{2}}{\int_{E_{\mathrm{cut}}} \frac{d \Gamma}{d m_{X}^{2}} d m_{X}^{2}}
$$

Photon Energy in $B \rightarrow X_{s} \gamma$

$$
\left\langle E_{\gamma}^{n}\right\rangle \equiv \frac{\int_{E_{\mathrm{cut}}}\left(E_{\gamma}\right)^{n} \frac{d \Gamma}{d E_{\gamma}} d E_{\gamma}}{\int_{E_{\mathrm{cut}} d E_{\gamma}} d E_{\gamma}}
$$

Global Analysis

- Data: BaBar, BELLE, CDF, CLEO, DELPHI
- With/without $1 / m_{c}$ expansion
- Compare mass schemes: 1S, PS, ...
- Half integer hadronic moments error badly behaved

+ Recent

$\left|V_{c b}\right|$: exclusive decays $B \rightarrow\left(D, D^{*}\right) \ell \nu$
- Luke's theorem

$$
\mathcal{F}_{*}(1)-1=\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{c}\right)^{2}
$$

$$
\mathcal{F}_{*}(w)=\mathcal{F}_{*}(1)\left[1+\rho^{2}(w-1)+c(w-1)^{2}+\ldots\right]
$$

- Extrapolation to $w=1$ constranea by aispersion relations (unitarity/analiticity)
[Boyd et al; Caprini et al; Bjorken; Uraltsev; Oliver et al]
- Lattice $\mathcal{F}_{*}(1)=0.917 \pm 0.008 \pm 0.005$
[Dvitiis et al; Laiho et al]
HFAG (ICHEP 2008) $\mathcal{F}_{*}(1)\left|V_{c b}\right|=(35.41 \pm 0.52) \times 10^{-3}$
DPF-Detroit (me, added in quad)

$$
\left|V_{c b}\right|=(38.62 \pm 0.69) \times 10^{-3}
$$

Deviates from inclusive by 4.5σ

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma\left(B \rightarrow D^{*} \ell \bar{\nu}\right)}{\mathrm{d} w}=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{3}} r_{*}^{3}\left(1-r_{*}\right)^{2} \sqrt{w^{2}-1}(w+1)^{2} \\
& \times\left[1+\frac{4 w}{1+w} \frac{1-2 w r_{*}+r_{*}^{2}}{\left(1-r_{*}\right)^{2}}\right]\left|V_{c b}\right|^{2} \mathcal{F}_{*}^{2}(w) \\
& \frac{\mathrm{d} \Gamma(B \rightarrow D \ell \bar{\nu})}{\mathrm{d} w}=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{3}} r^{3}(1+r)^{2}\left(w^{2}-1\right)^{3 / 2}\left|V_{c b}\right|^{2} \mathcal{F}^{2}(w) \\
& \text { - HQET gives } \mathcal{F}(1)=\mathcal{F}_{*}(1)=1
\end{aligned}
$$

End point spectra in $B \rightarrow X_{u} \ell \nu$ and $B \rightarrow X_{s} \gamma$

- Need to impose large E_{ℓ}-cut to remove background from $B \rightarrow X_{c} \ell \nu$
- OPE breaks down near end of spectrum.
- Maybe re-summed (in restricted range) into unknown "shape function" $f(x)$: [Bigi et al; Neubert]

$$
2 M_{B} f(x)=\langle B| \bar{Q}_{v} \delta(x+i n \cdot D) Q_{v}|B\rangle \quad n \cdot v=1, n^{2}=0
$$

- Universal: measure in $B \rightarrow X_{s} \gamma$ and use in $B \rightarrow X_{u} \ell \nu$
- Moments analysis: re-sum short distance corrections
[Leibovich et al; Neubert]
- OR: use OPE by novel cuts

$\left|V_{u b}\right|$: inclusive rate $B \rightarrow X_{u} \ell \nu$

- Theoretical Uncertainties
[Bauer et al; Leibovich et a al; Neubert]
- Weak annihilation contribution independent of $q_{\text {cut }}^{2}$ and $m_{\text {cut }}$; depends on magnitude of factorization violation

$$
\Gamma\left(q_{\mathrm{cut}}^{2}, m_{\mathrm{cut}}\right) \equiv \frac{G_{F}^{2}\left|V_{u b}\right|^{2}(4.7 \mathrm{GeV})^{5}}{192 \pi^{3}} G\left(q_{\mathrm{cut}}{ }^{2}, m_{\mathrm{cut}}\right)
$$

- Universality violation in shape function
- sub-leading shape functions

- $\alpha_{s}\left(\sqrt{ } \Lambda m_{b}\right)^{*} \Lambda / m_{b}$ "brick wall"
- numerics: $\alpha_{\mathrm{s}}\left(\sqrt{ } \Lambda m_{b}\right) * \Lambda / m_{b}$ at least 5% but there are ~ 10 terms so guesstimate $\sqrt{ }(10) * 5 \%=15 \%$
- Inclusive tension

- Results I: novel cuts (not so novel any more)
- Different analysis (ie choices of cuts, moments, etc) require different calculations:
- BLNP - B.O. Lange, M. Neubert and G. Paz, Phys. Rev. D72:073006 (2005) [arXiv:hep-ph/0504071v3]
- DGE - J.R. Andersen and E. Gardi, JHEP 0601:097 (2006) [arXiv:hep-ph/0509360v2]. and [arXiv:0806.4524]
- GGOU - P. Gambino, P. Giordano, G. Ossola, N. Uraltsev, JHEP 0710:058,2007 [arXiv:0707.2493].
- ADFR - U. Aglietti, F. Di Lodovico, G. Ferrera, G. Ricciardi, EPJC, Vol. 59 (2009), [arXiv:0711.0860], U. Aglietti, G. Ferrera and G. Ricciardi, Nucl. Phys. B768, 85 (2007) [arXiv:hep-ph/0608047]
- BLL - C.W. Bauer, Z. Ligeti and M.E. Luke, Phys. Rev. D64:113004 (2001) [arXiv:hep-ph/0107074v1]

- Results I: novel cuts (not so novel any more)
- Different analysis (ie choices of cuts, moments, etc) require different calculations:
- BLNP - B.O. Lange, M. Neubert and G. Paz, Phys. Rev. D72:073006 (2005) [arXiv:hep-ph/0504071v3]
- DGE - J.R. Andersen and E. Gardi, JHEP 0601:097 (2006) [arXiv:hep-ph/0509360v2]. and [arXiv:0806.4524]
- GGOU - P. Gambino, P. Giordano, G. Ossola, N. Uraltsev, JHEP 0710:058,2007 [arXiv:0707.2493].
- ADFR - U. Aglietti, F. Di Lodovico, G. Ferrera, G. Ricciardi, EPJC, Vol. 59 (2009), [arXiv:0711.0860], U. Aglietti, G. Ferrera and G. Ricciardi, Nucl. Phys. B768, 85 (2007) [arXiv:hep-ph/0608047]
- BLL - C.W. Bauer, Z. Ligeti and M.E. Luke, Phys. Rev. D64:113004 (2001) [arXiv:hep-ph/0107074v1]

Spread indicates underestimate ${ }^{\times 1 x^{10}}{ }^{\frac{3}{5}}$ theoretical uncertainties
(in 2005 Belle and BaBar reported results with 5% theory uncertainty)

- Results II: moments radiative/semileptonic
- LLR - Leibovich, Low, and Rothstein, Phys.Rev.D62:014010,2000 [arXiv:hep-ph/0001028v2], and Phys.Lett.B486:86-91,2000 [arXiv:hep-ph/0005124v1]
- LNP, Lange, Neubert and Paz (JHEP 0510 (2005) 084 [arXiv:hep-ph/0508178v2] and JHEP 0601 (2006) 104 [arXiv:hep-ph/ 0511098v1])

$\left|V_{u b}\right|:$ exclusive decays

$$
\operatorname{Br}(B \rightarrow \pi \ell \nu)=\left|V_{u b}\right|^{2} \int_{0}^{q_{\max }^{2}} d q^{2} f_{+}^{B \rightarrow \pi}\left(q^{2}\right)^{2} \times(\text { trivial factors })
$$

- Problem:
- experiment gives low q^{2} data
- lattice gives form factor at high q^{2}
- extrapolation introduces error
- Moving NRQCD: low data from lattice [K. Wong]
- Dispersion relations: combine lattice and experimental data over full q^{2} region fitting to model-independent expression based on analiticity and unitarity
[Arnesen et al; Becher an dHil; Ball; Mackenzie and Van de Water]

FNAL/MILC $N_{f}=2+1$

$$
\left|V_{u b}\right|=(2.94 \pm 0.35) \times 10^{-3}
$$

Tension between inclusive and exclusive?

(FNAL/MILC point not from HFAG)

Other ways to get $\left|V_{u b}\right|$

- $\mathcal{B}(B \rightarrow \ell \bar{\nu})$ measures $f_{B} \times\left|V_{u b}\right|$ - need f_{B} from lattice
- "Grinstein-type double ratio" inspired ideas (HQS / chiral symmetry suppressions) $-\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$

$$
-\frac{f^{(B \rightarrow \rho \ell \bar{\nu})}}{f^{\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)}} \times \frac{f^{\left(D \rightarrow K^{*} \ell \bar{\nu}\right)}}{f^{(D \rightarrow \rho \ell \bar{\nu})}} \text { or } q^{2} \text { spectra }- \text { accessible soon? }
$$

CLEO-C $D \rightarrow \rho \ell \bar{\nu}$ data still consistent with no $S U(3)$ breaking in form factors
Could lattice do more to pin down the corrections?
Worth looking at similar ratio with K, π - role of B^{*} pole...?
$-\frac{\mathcal{B}(B \rightarrow \ell \bar{\nu})}{\mathcal{B}\left(B_{s} \rightarrow \ell^{+} \ell^{-}\right)} \times \frac{\mathcal{B}\left(D_{s} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}(D \rightarrow \ell \bar{\nu})}$ - very clean... after 2015?
$-\frac{\mathcal{B}\left(B_{u} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}$- even cleaner... ever possible?

Rare B Decays: $b \rightarrow s \gamma$

- Sensitive to New Physics
-Rate
-CP asymmetry
- Experimental Measurements
- Precise Rate ($\sim 7 \%$ HFAG2008)
- Asymmetry will improve
-Largely Under Control (non-perturbative effects $\sim 5 \%$ in rate)

Rare B Decays: $b \rightarrow s \gamma$

- Sensitive to New Physics
-Rate
- CP asymmetry
- Experimental Measurements
- Precise Rate ($\sim 7 \%$ HFAG2008)
- Asymmetry will improve
-Largely Under Control (non-perturbative effects $\sim 5 \%$ in rate)

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i}
$$

Rare B Decays: $b \rightarrow s \gamma$

- Sensitive to New Physics
-Rate
- CP asymmetry
- Experimental Measurements
- Precise Rate ($\sim 7 \%$ HFAG2008)
- Asymmetry will improve
-Largely Under Control (non-perturbative effects $\sim 5 \%$ in rate)

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i} \\
& Q_{1,2}=\stackrel{\mathrm{c}}{\mathrm{~b}} / \stackrel{\mathrm{c}}{\mathrm{~s}}=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \stackrel{\text { b }}{\mathrm{b}} . \mathrm{w} \cdot \stackrel{\mathrm{c}}{\mathrm{~s}}, \quad\left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& Q_{3,4,5,6}=\stackrel{\stackrel{\mathrm{q}}{\mathrm{~b}}}{\mathrm{~s}} \stackrel{\mathrm{q}}{\mathrm{q}}=\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \\
& \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& Q_{7}=\mathrm{b} \mathrm{~s}^{\mathrm{s}}=\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& Q_{8}=\mathrm{b}^{\delta^{\mathrm{g}} \mathrm{~s}}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Rare B Decays: $b \rightarrow s \gamma$

- Sensitive to New Physics
-Rate
-CP asymmetry
- Experimental Measurements
- Precise Rate ($\sim 7 \%$ HFAG2008)
- Asymmetry will improve
\bullet Largely Under Control (non-perturbative effects $\sim 5 \%$ in rate)

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i} \\
& Q_{1,2}=\stackrel{\text { c. }}{\mathrm{b}} \stackrel{\mathrm{c}}{\mathrm{~s}}=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \stackrel{\text { c }}{\mathrm{b}} . \mathrm{w} \cdot \stackrel{\mathrm{c}}{\mathrm{~s}}, \quad\left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& Q_{3,4,5,6}=\stackrel{\substack{\mathrm{q} \\
\mathrm{~b}}}{\mathrm{q}} \stackrel{\mathrm{q}}{\mathrm{~s}}=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right) \text {, } \\
& Q_{7}=\mathrm{b}\left\{\mathrm{~s}=\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu},\right. \\
& Q_{8}=\mathrm{b}^{\delta^{\mathrm{g}} \mathrm{~s}}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \\
& \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

(

Rare B Decays: $b \rightarrow s \gamma$

- Sensitive to New Physics
-Rate
-CP asymmetry
- Experimental Measurements
- Precise Rate ($\sim 7 \%$ HFAG2008)
- Asymmetry will improve
-Largely Under Control (non-perturbative effects $\sim 5 \%$ in rate)

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i} \\
& Q_{1,2}=\stackrel{\mathrm{c}}{\mathrm{~b}} \mathrm{c}=\left(\overline{\mathrm{c}} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \quad \stackrel{\mathrm{c}}{\mathrm{~b}} \mathrm{w} \cdot \stackrel{\mathrm{c}}{\mathrm{~s}} \\
& Q_{3,4,5,6}=\stackrel{\stackrel{\mathrm{q}}{\mathrm{~b}}}{\mathrm{~s}} \stackrel{\mathrm{q}}{\mathrm{q}}=\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \\
& Q_{7}=\mathrm{b}\left\{\begin{array}{l}
\gamma \\
\mathrm{s} \\
16 \pi^{2} \\
\bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, ~
\end{array}\right. \\
& Q_{8}=\mathrm{b}^{\delta^{\mathrm{g}} \mathrm{~s}}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \\
& \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Relative size of various contributions have been studied

Energetic photon production in charmless decays of the \bar{B}-meson

 $\left(E_{\gamma} \gtrsim \frac{m_{n}}{3} \simeq 1.6 \mathrm{GeV}\right.$)A. Without long-distance charm loops:

1. Hard

Dominant, well-controlled.
2. Conversion

$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right), \quad(-1.5 \pm 1.5) \%$.
[Lee, Neubert, Paz, 2006]
3. Collinear

Pert. $<1 \%$, nonp. $\sim-0.2 \%$.
Exp. $\pi^{0}, \eta, \eta^{\prime}, \omega$ subtracted.
[Kapustin,Ligeti,Politzer, 1995]
Perturbatively $\sim 0.1 \%$.
B. With long-distance charm loops:

$\mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right), \quad \sim+3.1 \%$.
[Voloshin, 1996], [...],
[Buchalla, Isidori, Rey, 1997]

Exp. J / ψ subtracted $(<1 \%)$ Perturbatively (including hard): $\sim+3.6 \%$.
$\phi_{i j}^{(1)}(\delta), \quad \phi_{i j}^{(2) \beta_{0}}(\delta), \quad i, j=1,2$
7. Annihilation of $c \bar{c}$ in a heavy $(\bar{c} s)(\bar{q} c)$ state

$\mathcal{O}\left(\alpha_{s}(\Lambda / M)^{2}\right)$

$\mathcal{O}\left(\alpha_{s} \Lambda / M\right)$
$M \sim 2 m_{c}, 2 E_{\gamma}, m_{b}$.
$\begin{array}{ll}\text { e.g. } & \mathcal{B}\left[B^{-} \rightarrow D_{s J}(2457)^{-} D^{*}(2007)^{0}\right] \\ \mathcal{B}\left[B^{0} \rightarrow D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0} K^{-}\right] \simeq 1.2 \%,\end{array}$

Three steps in the determination $C_{7}\left(m_{b}\right)$:

1. Matching: Choose $C_{i}(M)$ so that the Fermi effective theory and the SM , renormalized at $M \sim M_{W}$
2. Running: Compute anomalous dimension matrices and use RG-equation to compute $C_{i}\left(m_{b}\right)$
3. Matrix Elements: Perturbative calculation of amplitudes in EFT (renormalized at m_{b})

A prodigious effort!

Matrix elements ($\mu_{b} \sim m_{b}$):

Chetyrkin, Misiak, Münz; Greub, Hurth, Wyler Cleo ${ }^{\text {Adel, Yao; Ali, Greub }}$ Cleo

Ciuchini, Franco, Martinelli, Reina, Silverstrini; Buras, Misiak, Münz, Pokorski

Status of calculation of matrix elements

$$
\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b}^{5} \alpha_{\mathrm{em}}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) G_{i j}\left(E_{0}, \mu_{b}\right)
$$

NLO
$i, j=1,2,7,8$ dominate
bust rest also known
[Greub, Hurth, Wyler; Ali, Greub](1996)
[Buras, Czarnecki, Msisak, Urban; Pott] (2002)

NNLO only parts of $i, j=1,2,7,8$ known:

- G_{77} determined [Blokland et al; Melnikov, Mitov; Asatrian et al]
- G_{11}, G_{12} and G_{22} :
-2 particle cuts are $|\mathrm{NLO}|^{2}$
-3,4 particle cuts vanish at endpoint
- Ongoing progress in the rest
$\bullet 2,3,4$ particle cuts in G_{17} and G_{27} [Schutzmeier, Czakon, Boughezal]
$\bullet 2,3,4$ particle cuts in G_{78} [Asatrian, Ewerth, Ferroglia, Greub, Ossola]

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{NNLO}}= \begin{cases}(3.15 \pm 0.23) \times 10^{-4}, & \text { hep-ph/0609232, using the 1S scheme }, \\
(3.26 \pm 0.24) \times 10^{-4}, & \begin{array}{l}
\text { arXiv:0805.0271, but } \bar{m}_{c}\left(\bar{m}_{c}\right)^{2 l o o p} \\
\\
\text { rather than } \bar{m}_{c}\left(\bar{m}_{c}\right)^{11 \mathrm{loop}} \text { in } P\left(E_{0}\right)
\end{array}\end{cases}
$$

Rare B Decays: $b \rightarrow s \ell$

- Requires 1 loop less than radiative
- NNLO complete
- FB asymmetry zero in $B \rightarrow K^{*} \ell \ell$ robust [Burdman] even including non-resonant Kpi [BG, Pirjol]

- Sensitive to new physics

The end

