Semíleptonic B and D decays

Giulia Ricciardi

Università di Napoli "Federico II"

Outline

Motivations

Semileptonic B decays

Exclusive measurement

$$\begin{array}{ll} \bigstar b \to c\ell v & (B \to D^{(*/**)} \ \ell v) \\ \bigstar b \to u\ell v & (B \to \eta\ell v, B \to \pi\ell v) \\ \bigstar b \to s\ell^+\ell^- & (B \to K^*\ell^+\ell) \\ \bigstar b \to d\ell^+\ell^- & (B \to \pi \ \mu+\mu-) \end{array}$$

CKM favoured CKM suppressed FCNC, rare decays FCNC, the rarest decay

♣ Inclusive measurement $B \rightarrow X_{c(u)} \ell v$

 $|V_{ub}| |V_{cb}|$ extraction

Semileptonic D decays

Motivations I

Precise determination:from semileptonic B decays: $|V_{ub}| |V_{cb}|$ input for NP sensitive other estimates, e.g. $\varepsilon_{K} = f(|V_{ub}|, A(|V_{cb}|))$ from semileptonic D decays: $|V_{cs}| |V_{cd}|$ hadronic form factors

Motivation II (Because we can...)

Theory

 \mathbf{A} b \rightarrow c (u) \mathbf{V} tree level processes: assumed NP free quantities

Leptonic and hadronic contributions factorize

Experiment

ANot helicity suppressed, as leptonic decays (τ not suppressed but exp challenging)

Exclusive measurement $B \rightarrow D^{(*)}\ell v$

$$\frac{d\Gamma}{d\omega}(\bar{B} \to D \, l\bar{\nu}) = \frac{G_F^2}{48\pi^3}(m_B + m_D)^2 m_D^3(\omega^2 - 1)^{3/2} |V_{cb}|^2 (\mathcal{G}(\omega))^2$$
$$\frac{d\Gamma}{d\omega}(\bar{B} \to D^* \, l\bar{\nu}) = \frac{G_F^2}{48\pi^3}(m_B - m_{D^*})^2 m_{D^*}^3(\omega^2 - 1)^{1/2} |V_{cb}|^2 \chi(\omega)(\mathcal{F}(\omega))^2$$

 $\omega = v_B \cdot v_{D^{(\star)}}$

- 1) Data for $|V_{cb}||\mathcal{G}(\omega)|$ and $|V_{cb}||\mathcal{F}(\omega)|$ taken at $w \neq 1$ due to kinematics
- 2) Results extrapolated at non-recoil point w=1

Constraints by HQEF

3) Nonperturbative th evaluation of $|\mathcal{G}(1)|$ and $|\mathcal{F}(1)|$

lattice, QCD sum rules

4) |V_{cb}| extraction

lattice

Recent 2+1 evaluation Fermilab/MILC 2010

 $\mathcal{F}(1) = 0.902 \pm 0.17$

Including ew corrections to the four-fermion operator and adding errors in quadrature

Data from HFAG (end of 2009) = PDG (fit 2012)

$$\frac{\langle D^{\star}|\bar{c}\gamma_{j}\gamma_{5}b|\bar{B}\rangle\langle\bar{B}|\bar{b}\gamma_{j}\gamma_{5}c|D^{\star}\rangle}{\langle D^{\star}|\bar{c}\gamma_{0}c|D^{\star}\rangle\langle\bar{B}|\bar{b}\gamma_{0}b|\bar{B}\rangle}$$

$$|V_{cb}||\mathcal{F}(1)| \times 10^3 = 36.0 \pm 0.5$$

$$|V_{cb}|_{B \to D^{\star} l \nu} = (39.6 \pm 0.6_{(\text{exp})} \pm 0.8_{(\text{th})}) \times 10^{-3}$$

Unquenched evaluation Okamoto et al (Fermilab/MILC) 2005

Data from HFAG (end of 2011) (more recent Babar 2008/09)

 $\mathcal{G}(1) = 1.074 \pm 0.018_{\text{stat}} \pm 0.016_{\text{syst}}$ $|V_{cb}|\mathcal{G}(1) = (42.6 \pm 0.7 \pm 1.4) \times 10^{-3}$

$$|V_{cb}|_{B \to Dl\nu} = (39.4 \pm 1.4_{\rm exp} \pm 1.3_{\rm th}) \times 10^{-3}$$

form factor normalization at values ω >1 may allow more precise determinations; currently available only in the quenched approximation higher $|V_{cb}| \approx 41.6$ De Divitiis et al 2007

Non lattice estimates

One or two σ lower than lattice estimates \rightarrow V_{cb} relatively higher

Zero recoil sum rules
Gambino et al 2010 $\mathcal{F}(1) = 0.86 \pm 0.04$ Including full α_s and up to $1/m_b^5$

$$|V_{cb}|_{B \to D^* l\nu} = (41.6 \pm 0.6_{(\text{exp})} \pm 1.9_{(\text{th})}) \times 10^{-3}$$

Routes to lattice improvement: examination of the extrapolation to zero recoil, unquenched lattice-QCD calculations at $\omega \neq 1$, larger lattice sizes....

Decays to excited D Meson States

1) BR for inclusive $B \rightarrow X_c \mid v$ not saturated by sum of exclusive BR

$$\mathcal{B}(B^+ \to X_c l^+ \nu) - \mathcal{B}(B^+ \to D l^+ \nu) - \mathcal{B}(B^+ \to D^{(\star)} l^+ \nu) - \mathcal{B}(B^+ \to D^{(\star)} \pi l^+ \nu) = (1.45 \pm 0.67)\% \quad \overset{\text{Bernl}}{\underset{\text{et al.}}{\text{et al.}}}$$

nlochner al 2012

- 2) "1/2 vs 3/2" puzzle
 - \mathbf{j}_{ℓ} total angular momentum of the light degrees of freedom in HQ limit
 - D** generically denotes two pairs (j_l=1/2 and j_l=3/2) of 1P (L=1) positive parity states in the non-relativistic constituent quarkmodel

Theory expected (Leibovich et al 98, Uraltsev 01 ...) not confirmed by exp

$$\Gamma(B \to D^{\star\star}(j_l = 3/2) l\bar{\nu}) \gg \Gamma(B \to D^{\star\star}(j_l = 1/2) l\bar{\nu})$$

Exp situation (Babar, Belle 08) not clear
non resonant additions (D* nπ, D nπ, D* * nπ)
cross-feed between the different 1P states, due to strong interaction
decays to radially excited charm mesons (2S) (Babar 2010) Bernlochner et al 2012

Semileptonic Bs

Independent determination of $|V_{cb}|$ and $|V_{ub}|$

1. Inclusive: $B_s \rightarrow X \mid v$

Comparing with semileptonic B: check of quark-hadron duality, evauation of heavy quark expansion parameters...

Gronau, Rosner 10 Bigi, Mannel, Uraltsev 12, ...

2. Exclusive: $B_s \rightarrow D^{(*)} | v$, $B_s \rightarrow K^{(*)} | v$, $B_s \rightarrow B e v$ (b spectator)

check (expected sizable) SU(3) breaking Inclusive vs sum of exclusive form factors evaluation

Melic, Duplancic 08

Light Flavour Spectroscopy in Semileptonic Decays

$$D_s^+ \to \eta^{(\prime)} l^+ \nu$$
 $D^+ \to \eta^{(\prime)} l^+ \nu$

$$B^+ \to \eta^{(\prime)} l^+ \nu$$

- Spectator diagram dominance
- Cabibbo allowed $c \rightarrow s$, suppressed $c \rightarrow d$ and CKM suppressed $b \rightarrow u$

Spectator

Gives information on mixing angle and gluonic contentof η-η' systemDi Donato, Bigi, GR 2012,...

e.g. CLE009
$$\phi_{\rm P} \approx 4 \frac{\Gamma(D_s^+ \to \eta' l^+ \nu) / \Gamma(D_s^+ \to \eta l^+ \nu)}{\Gamma(D^+ \to \eta' l^+ \nu) / \Gamma(D^+ \to \eta l^+ \nu)} \simeq \cot^4 \phi_P$$

BESIII expects errors on ϕ_P going down to 2% lattice FF calculation QCDSF Ds (in progress)

FCNC decays $B \rightarrow K^{(*)} | I$

transition form factors: leading source of th uncertainty: may be as large as ~ 30% on some branching ratios Ali et al 2000/02,...

Large energy of the emitted light cone meson in the B meson rest \longrightarrow QCD sum rules frame (low q²) Ball,Braun 1998,...

small energy (high q^2)

Iattice preliminary unquenched results

Liu et al 2011

Investigated by (I= μ) by Belle 09, CDF 2011, Babar (see talk by L. Sun) & LHCb (see talk by N. Serra) 2012 Some tension with SM in some observables

Stay tuned!

Long list of interesting observables:

- 1. branching ratio
- 2. lepton forward-backward asymmetry A_{FB}
- 3. longitudinal K*-polarization fraction F_L
- 4. Transverse asymmetry S₃
- 5. T-odd CP asymmetry A_{im}...

FCNC $B \rightarrow \pi \mu^+ \mu^-$ the rarest

Same lowest order penguin and box diagrams as $B \to K \; I^{\scriptscriptstyle +} \; I^{\scriptscriptstyle -}, \;$ but b $\to \; d$

Suppressed by a factor $|V_{td}|^2 / |V_{ts}|^2 \approx 0.04$

First observation at LHCb (1.0 fb⁻¹)

$BR(B^+ \rightarrow \pi^+ \mu \mu) = (2.4 \pm 0.6 \pm 0.2) \times 10^{-8}$

LHCb-CONF-2012-006

Agrees with Standard Model, within the large errors possible enhancement due to new physics Aliev, Savci 1999, Hai-Zhen, Lin-Xia, Gong-Ru 08, Wang et al 2008...

FCNC Bs as well: Bs
$$\rightarrow \phi \mu^+ \mu^-$$

 $BR(Bs \rightarrow \phi \mu^{+} \mu^{-}) = (0.78 \pm 0.10_{(stat)} \pm 0.06_{(syst)} \pm 0.28(B)) \times 10^{-8}$ LHCb-CONF-2012

|Vub| Exclusive determination

- The decay $B \rightarrow \pi \ell v$ is the simplest to interpret, as it is affected by a single form factor (FF) $\frac{d\Gamma(\overline{B}^0 \rightarrow \pi^+ \ell \bar{\nu})}{dq^2} = \frac{G_F^2 |\vec{p}_{\pi}|^3}{24\pi^3} |V_{ub}|^2 |f_+(q^2)|^2$
- theoretical predictions for the FF f₊(q²) split into two parts: form factor normalization f₊(0) & functional form of the q² dependence.

quark models, QCD sum rules, Lattice

- Progress in enlarging the region of accessible momentum transfers
- LCSR generally access low q^2 regions ($\leq 16 \text{ GeV}^2$)
 - \rightarrow analitycally continue to higher values
- Complementary information from lattice: lattice simulations are restricted to large q² (≥16 GeV²) to avoid large discretization errors

Fermilab/MI LC 09

Lattice

Two parameterizations for FF shape in q^2 :

- z-expansion (Arnesen et al., Boyd, Grinstein, Lebed), based on analyticity, unitarity, and HQ symmetry (used with FNAL/MILC data)
- Becirevic Kaidalov (BK) parameterization, 3-parameters description given by the M_{B*} pole (used with HPQCD data)

$$|V_{ub}^{exc.}|^{\mathbf{LLV}} = (3.12 \pm 0.26) \times 10^{-3}$$

Laiho, Lunghi, Van de Water (LLV) 2010 <u>www.latticeaverages.org</u> include only Nf=2+1 100% correlation is taken for the

theory/experimental errors in calculations using the same lattice/exp. data.

QCD Light Cone Sum Rules

latest update of estimates in the full kinematic regions (zparameterization): error down to 10%

Khodjamirian, Mannell, Offen, Wang 2011

(colour online) The normalized q^2 -distribution in $B \rightarrow \pi l \nu$ obtained from LCSR and extrapolated with the z-series parameterization (central input- solid, uncertainties -dashed). The experimental data points are from BABAR: (red) squares [1], (blue) triangles [2] and Belle [3]: (magenta) full circles.

$$|V_{ub}| = (3.40 \pm 0.07_{\exp -0.32 \text{ theo}}) \times 10^{-3}$$

PDG12 from HFAG11 $q^2 < 12 \text{ GeV}^2$

agreement with lattice still lower than

inclusive determination

$$|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$$

PDG12 exclusive average

Inclusive decays

- OPE factorization of short and long distance dynamics
 - Nonperturbative input given by matrix elements of local operators
 - Coefficients of the operators perturbatively calculated
- parameterization of heavy quark dynamics by means of HQET
 - double series in αs and Λ/mb
 - dependence on quark masses and HQET expansions parameters (2 parameters at $O(1/m_b^2)$, 2 more at $O(1/m_b^3)$...)
 - quark masses defined in a chosen scheme (15, kinetic, etc.)

Inclusive $B \rightarrow X_c | \mathbf{v}$

$$\Gamma(B \to X_c l\nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[f(\rho) + k(\rho) \frac{\mu_\pi^2}{m_b^2} + g(\rho) \frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3}\right) \right]$$
$$f(\rho) = f^0(\rho) + f1(\rho) \frac{\alpha_s(\mu)}{\pi} + \dots \qquad \rho = \frac{m_c^2}{m_b^2}$$

f, k, g differ for different observables, e.g. total rate, moments...

- O(α_s²) corrections to leading term (parton model)+BLM terms α_sⁿ⁺¹β₀ⁿ [Melnikov 08; Czarnecki, Pak 08, Biswas and K. Melnikov, 10, Gambino 11..
- $O(\Lambda_{QCD}/m_b^5)$ at leading term for total rate [Dassinger, Turczyk, Mannel 07, Bigi, Uraltsev, Zwicky 07, Mannel, Turczyk, Uraltsev 10...]
- SD μ_{π}^2 at order O(α_s) (μ_G^2 still at tree level) [Becher, Boos, Lunghi07,...]
- Intrinsic charm estimates (log m_c, 1/m_c² 1/m_b³...) [Breidenbach, Feldmann, Mannel, Turczyk08, Bigi, Mannel, Turczyk Uraltsev 10,...]

|Vcb| determination

- measure spectrum + as many moments as possible (Babar, Belle, CDF, CLEO, Delphi)
- Fit to HQE parameters, quark masses and $|V_{cb}|$
- Mass and HQE parameters depend on the renormalization scale and schemes:
 - Pole scheme: calculationally most convenient, but plagued by large misbehaved
 - MSbar: Setting the scale: order of the b quark mass unnaturally high, due to the presence of typical scales signicantly below
 - low subtracted mass schemes: non perturbative contribution to the heavy quark pole mass can be subtracted by making contact to some physical observable , e.g. kinetic scheme or the 1S scheme
 [Bigi et al.95, Hoang et al 99]
- OPE-treatable HF decays in two separate steps: heavy quark decay + final hadron composition second step not determine gross characteristic like total rates, etc. (duality)
 - Duality violation effects are hard to classify; in practice they would appear as unnaturally large coefficients of higher order terms in the expansion.

duality assumed

• Threshold resummation (vs **fixed order**) of large scale [Aglietti et al 07, Di Giustino et al 2011]

Vcb| results

global fit to lepton energy and hadronic mass moments in the kinetic mass scheme (full order α_s^2)

COMPARE AVERAGES

$$|V_{cb}| = (40.0 \pm 1.1) \times 10^{-3}$$

scaled incl-excl average (PDG 12)

The fit constrains only a linear combination of m_b and m_c .

To precisely determine m_b, two (alternative) constraints

 photon energy moments in B -> X_s γ [Benson, Bigi, Uraltsev 05]

2) precise c-quark mass in the MSbar scheme, $m_c(3 \text{ GeV}) = 0.998(29) \text{ GeV}$ [Dehnadi et al 2011]

$$|V_{cb}|_{\rm incl} = (41.9 \pm 0.7) \times 10^{-3}$$

Inclusive |V_{ub}|

large b \rightarrow c background ($|V_{cb}/V_{ub}|^2~\approx 100$)

Need experimental phase space cuts to reduce background; in general

$m_X \ll E_X$

Phase space regions where OPE fails become dominant; new unwelcome effects (with respect to semileptonic $b \rightarrow c$):

- Final gluon radiation strongly inhibited: soft and collinear singularities
- perturbative expansion of spectra affected by large logarithms $a_s^n \log^{2n}(2 E_X/m_X)$ to be resummed at all orders in PT
- non-perturbative effects related to a small vibration of the b quark in the B meson (Fermi motion) enhanced at $m_{X}{}^2 \stackrel{\sim}{\sim} \Lambda_{qcD} \, E_X$

Extraction of $|V_{ub}|$: routes to progress

- Enlarge experimental range
 - Belle results 09 access 90% data, claimed overall uncertainty of 7% on |V_{ub}| (actually low (<1/10) signal-to-background ratio in the threshold region)
- Enlarge theoretical prospective from HFAG
 - predictions based on parameterizations of shape function, and OPE constraints
 - BLNP Bosch, Lange, Neubert , Paz
 - GGOU

Gambino, Giordano, Ossola, Uraltsev

- predictions based on resummed pQCD
- DGE Dressed Gluon Exponentiation
- ADFR

Andersen, Gardi

- Aglietti, Di Lodovico, Ferrera, GR
- global fit of shape function, $|\,V_{_{ub}}|$ and $m_{_b}$ (also data on B \rightarrow Xs γ)
- SIMBA

Tackmann, Lacker, Ligeti, Stewart...

Fits to updated data

Data from HFAG (end of 2011)

• Spread among calculations comparable to quoted theoretical (non-parametric) errors

Resulting averages

4,8

4,4

4

3,6

3,2

2,8

Excl

Utfit

CKMfitter

From CKM fit

At SuperFlavour factories (75 ab⁻¹) errors expected to reduce to 3 % (excl) 2% (incl)

DGE

6601

inclusive

ADFR

BILNP

 $|V_{ub}|$ averages [10⁻³]

BLL= Bauer, Ligeti, Luke, LLR= Leibovich, Low, Rothstein LNP= Lange, Neubert, Paz

SF Model independent extraction (only Babar data) Semileptonic D meson decays: (the same, only different)

$$b \rightarrow c(u) \mid v \longrightarrow c \rightarrow s(d) \mid v$$

Extraction of $|V_{cd}| |V_{cs}|$

More precise measurements using leptonic decays which depends on $f_{D(s)}$ (see talk of Bozek):

$$D^+_{(s)} \rightarrow l^+ \nu$$

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} f_{D_{(s)}}^2 m_\ell^2 M_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{M_{D_{(s)}^+}^2}\right)^2 |V_{cq}|^2$$

present lattice and exp uncertainties reflect on $|V_{cd}| |V_{cs}|$ up to $\approx 6\%$ PDG12 (recent QCD sum rules for form factor general agreement, larger errors) (Lucha et al 11....) Complementary role of semileptonic decays

$$D \to (K,\pi) \ell^+ \nu \qquad \qquad \frac{d\Gamma}{dq^2} = \frac{G_F^2 p_h^3}{24\pi^3} |V_{cs,cd}|^2 |f_+(q^2)|^2$$

Only one form factor neglecting lepton masses

Uncertainty not too different than leptonic ($\approx 10\%$)

By using unquenched lattice+ average recent exp results

PDG12

 $|V_{cs}| = 0.98 \pm 0.01 \pm 0.10$ $|V_{cd}| = 0.229 \pm 0.006 \pm 0.024$

First error is exp and the second from th uncertainty on form factors

Improvements to be expected: lattice FNAL/MILC & ETMC calculation in progress

Rare Decays

FCNC in charm sector more suppressed than in the B sector, due to more efficient GIM mechanism (internal down-type quarks-not so different masses)

SM contribution is dominated by long distance effects

 $D \rightarrow X_u \ell^+ \ell^-$ order (10⁻⁸) (can be reached at SuperFlavour machines) Fajfer 01, Burdman 02... Asner 07...

Intermediate resonances (of larger branching ratios) separated from those due to short-range processes by applying selection criteria on the invariant mass of the leptonic pair

New physics enhancements not completely ruled out

Paul et al 11, ...

Conclusions

Semileptonic B and D decays on a well deserved podium to extract CKM matrix elements and to validate theoretical tools

Long standing $|V_{ub}|$ discrepancy between exclusive, inclusive and UT fits determinations; tensions with SM in some observables (e.g. isospin asymmetry in B \rightarrow K $\mu^+ \mu^-$ at LHCb...)

CKM determinations in charm sectors consequential for other processes as well

Encouraging and impressive recent experimental progresses (notably LHCb and BES III joining the arena)

Stay tuned for progress in 2012, year of the dragon!

Thank you

