Follow-up PSB H- chicane magnets: Inconel vacuum chamber option & consequences on beam dynamics

E. Benedetto
LIU-PSB Meeting, 26/9/2013

Aim

- Evaluate differences wrt space charge between:
 - Ceramic chamber
 - Inconel chamber (eddy currents inducing multipolar errors)
- See presentation LIU-PSB on 30/5/2013
 - Very intense LHC beam (last presentation)
- Today results for:
 - LHC type beam, still with painting, Ex*=1.2um, Np=160e10
 - Isolde type beam, Np=1e13, Ex*=9um, Ey*=6um

NB: THESE RESULTS ARE VALID IN RELATIVE, i.e. for our comparison, WHILE FOR THE ABSOLUTE VALUE MORE WORK IS NEEDED, both from the PSB optics modeling AND code debugging/benchmarking

Limitations

- The model is very simple
 - Double harmonics
 - Acceleration
 - No errors & non-linearities in the lattice except...
- The only errors are in the chicane magnets, i.e
 <1/16 machine (and QNO correctors)

NB: THESE RESULTS ARE VALID IN RELATIVE, i.e. for our comparison, WHILE FOR THE ABSOLUTE VALUE MORE WORK IS NEEDED, both from the PSB optics modeling AND code debugging/benchmarking

"`Very intense" lhc beam (see 30/5/13)

RED: ceramic
GREEN: inconel,
no compensation
BLUE: inconel

Large growth in horizontal, due to (too) large ΔQ & integer crossing

LHC type beam (produced with 20t painting)

No more growth in horizontal

Isolde beam (1/4)

- Produced by C.Bracco with optimized painting bump function (see Follow-up H- injection review: <a href="https://indico.cern.ch/conferenceTimeTable.py?confld="https://indico.cern.ch/conferenceTimeTable.py?conferenceTi
- With Orbit (by Chiara) up to turn 159, to have complete fall of painting bump → then converted (EB) in PTC-Orbit coordinates:
 - Small differences in bucket shape and residual phase offset
 - → produce artificial losses in the code of ~12%

Needs optimization

Isolde like beam (2/4)

Horizontal emittance dominated by losses

Isolde like beam (3/4)

RED: ceramic
GREEN: inconel,
no compensation
BLUE: inconel

tuilis

>12% losses, mostly artificial, due to non-perfect RF capture → relative is OK!

Isolde like beam (4/4)

>12% losses, mostly artificial, due to non-perfect RF capture

PSB Space-Charge activities ongoing

- Evaluate impact of new H- injection @ 160MeV
- LHC beams: Find optimum WP for max brightness, Effect of integer, resonance compensation, machine model
- Losses & halo for high intensities/large emittance
- Code consolidation (Highest priority! within SC study-group)
- Injection chicane (discussed in Friday's Injection meetings)
 - Add quadrupolar component in the BSW1 model
 - Optimum shape for bump decay
- Benchmark with 160 MeV measurements (part of V.Forte's Thesis)
- Add alignment & quads errors (V. Forte, with input from M. Mc Ateer)
- High intensity beams: set-up PTC-Orbit simulations (past work done with Orbit) and losses localization (M. Kowalska, TS starting next week)

Conclusions: inconel vs. ceramic?

- Confirmed conclusions of presentation 30/5/13:
 (http://indico.cern.ch/conferenceDisplay.py?confld=25
 4489) for the beams of interest
- No showstoppers for the inconel chamber are found, but compensation is required
- Simulations results are valid only in relative, to discriminate between ceramic and inconel chamber
 - optics model as simple as possible,
 - no errors except in BSW magnets
- A document is in preparation