Puppet at MWT?2

Sarah Williams
Indiana University

Puppet Overview

* “Puppet is an open-source next-generation
server automation tool. It is composed of a
declarative language for expressing system
configuration, a client and server for
distributing it, and a library for realizing the
configuration.” —PuppetlLabs Puppet FAQ

nttp://docs.puppetlabs.com/guides/fag.html

* Requires an already built node — does not
nandle OS install

Why Puppet

Consistent file and data integrity monitoring across
the cluster, including change alerts

Ability to keep revisioned and backed up configuration
files in a central repository

Simplified deployment of new nodes and services
Role-based configuration profiles

Ability to share configuration components
(“modules”) with other sites

Integration with provisioning system (Cobbler) and
virtual machine creation (KVM)

How it works

Two components: client & server

— Server can run as daemon: (Puppetmasterd), or within an existing web application as a rack
application (apache+passenger) . MWT2 uses a rack application install, which is more complex
to set up, but more stable. Puppetmasterd has a memory leak issue, so if using it is
recommended to restart it daily.

— Client runs on the node to be configured
— Clients and server have SSL certificates for authentication, and to encrypt communications

Server stores configurations in files on the server, provides them to client when
requested

Puppet client requires an already-built node (prebuilt with cobbler/rocks/etc or
custom installed by hand)

— Basic requirements must be fulfilled: Network Access, Ruby, Facter
Client confirms each part of its configuration every time it runs, fixing those pieces
which are out of sync

— Client will not change anything which is not explicitly defined in its configuration

— Can run as daemon or cron, but daemon has same memory leak issue as puppetmasterd. Cron
strongly recommended.

— Too many clients running at once can overwhelm the server. We stagger the updates across an
hour window 9-10am, every weekday.

Configuration

All configurations are defined on the server

It is highly recommended to keep the whole puppet tree in a
version control system such as CVS or Subversion

Puppet config files are called ‘manifests’ and end in .pp
The puppet config language is declarative and based on Ruby

When a client checks in, the server matches the client to a
node definition and passes that information to the client. The
client then executes the objects associated with that node
definition.

Objects are not guaranteed to be executed in a linear fashion.

Use require to ensure necessary steps occur in the correct
order, but beware creating loops.

Manifests

Object types include nodes (servers), cron, users,
groups, services, packages, and files

Special objects exec and notify
Generic object class

service { 'cvmfs':

enable => true,

ensure => true,

hasstatus => true,

hasrestart => true,

require => [Package['cvmfs-0.2.68-1'],
Package['cvmfs-init-scripts'],
Package['cvmfs-keys-1.1-2'],
Package['fuse.x86_64'],
Service['autofs'],
File['/etc/cvmfs/default.local'],
File['/etc/auto.master'],
File['/etc/fuse.conf']]

Modules

* Re-usable components, |/etc/puppet/modules

defined by combining sendmail/
manifests, and files files/

 Many modules for
standard services

sendmail.mc

available in Puppet submit.cf
Forge manifests/
http:// init.pp

forge.puppetlabs.com/

MWT2 Setup — Organization

* /etc/puppet/manifests/ import nodes.pp

. . . import templates.
— sites.pp: First manifest k R A

loaded. All other maniests
are loaded form this file.

— templates.pp: Collection of | cass luzsnode

include yum::mwt2::repo

Conﬁguraﬁons Common|y include baseclass

include user::osgvo

grouped together (i.e. a o o e e E A
. include dcache::logrotate

worker-node config, a include rsync::dcachemeta
include puppet::daily::cron

storage-node template) }

— nodes.pp: Defines each node 'iut2-s3' {
I t h t d . include iu::snode
client nost ana assigns include dell::delldset

them templates }

MWT2 Setup

* /etc/puppet/modules/

— Directories are the names of the modules

class sendmail::x86_64::mwt2 {
package { 'sendmail.x86_64": ensure => present }
package { 'sendmail.i386': ensure => absent }
service { "sendmail":

enable => false,

ensure => stopped,

require => Package["sendmail.x86_64"]
}
file { "/etc/mail/submit.cf":

source => "puppet:///modules/sendmail/submit.cf",

owner => root,

group =>root }

MWT?2 Setup (cont.)

A more complex module example:
http://repo.mwt2.org/viewvc/puppet/modules/xrootd/manifests/init.pp?revision=1.6&view=markup

* Most of our system configuration happens in Puppet. Cobbler provisions nodes
with a minimum set of RPMs, including the puppet client, which auto-runs after
install. We could do more configuration in Cobbler (RedHat kickstart files), but
find it easier to maintain just one set of config files.

e All servers (worker and head node) are configured via Puppet. Some server
software and configuration for head nodes is done by hand. We are working
towards full automation. We have not tried automating a Pacman install.

* ltis helpful to keep track of and limit the layers of abstraction built into the
configuration. Too many layers of abstraction make the configuration difficult to
understand & update. We are currently over-abstracted, working on combining
redundant system classes. One way to accomplish this is using ‘define’.

Define Statements

* The CVMFS module is a good example of a define which takes variables, assigns defaults and
deploys a set of configuration statements related to a single topic.

* This one line configures all of CVMFS for a worker node.

— cvmfs::mount { cvmfsuc: cvmfs_http_proxy=>"
http://uct2-gridl.uchicago.edu:3128;http://iut2-gridl.iu.edu:3128;DIRECT" }

e Then the cvmfs::mount is as follows:

define cvmfs::mount(
Scvmfs_http_proxy="http://uct2-grid1.uchicago.edu:3128;http://iut2-gridl.iu.edu:3128;DIRECT",
Scvmfs_quota_limit=25000,
Scvmfs_server_url="http://cvmfs.racf.bnl.gov:8000/opt/@org@,http://cernvm-webfs.cern.ch/opt/@org@",
Scvmfs_repositories="atlas’,
Scvmfs_cache_base='/scratch/cvmfs')

}

* Note that the above example only overrides the cvmfs_http_proxy field, but leaves the rest of the
fields alone. Another node or template might choose to override a different setting, or not override
any of the defaults.

http://repo.mwt2.org/viewvc/puppet/modules/cvmfs/manifests/init.pp?revision=1.10&view=markup

USATLAS Meeting on Virtual Machines and

Configuration Management at BNL H

6/15/11

Common tasks

Add a new server:

— Add host definition and assign templates in nodes.pp
OR

— Define in Cobbler and use the Management Classes field to assign
templates.

Remove a server from puppet control:
— In nodes.pp, comment out the templates assigned to the host.
Test configuration changes:
— Time the test to not coincide with daily Puppet client run window
— Apply changes to code, test synax with puppet —parseonly
— Run on a test workernode with puppetd —test
Force immediate update of client hosts
— Use SSH to run puppetd —test on all nodes
— Verify no errors by looking at SSH output or logs on syslog collector

Encryption

* The first run of puppet will generate the client certificate. If
client certificate is lost, it must be deleted from the server
side with ‘puppetca —clean <hostname>’ for a new one to
be generated

— When reloading a node, we usually delete and regenerate the
cert rather than try to preserve it

— If the cert on the server isn’t cleaned before reload, the new
cert will be rejected. To recover, clear the cert on the server,
delete /var/lib/puppet on the client, and re-run the puppet
client.

* We have autosign turned on for the domains we control.
Otherwise you must sign each worker’s cert on the server
side. If you turn on autosign, make sure you define the
domain to be only those machines you control.

Services Currently Configured

Atlas WN Requirements
(Compilers, libraries)

Hardware monitoring with
Ganglia, Dellsrvadmin, Smartd,
Lmsensors, customized for each
hardware configuration

Hardware optimization with
hdparm, blockdev, kernel & ext4
tunings

Database & system disk backups
CVMES

dCache

Ldap
Nagios probes
NFS

PBS
Condor
Sendmail
Snmpd
Ssh
Syslog
Xrootd
Yum

Future Plans

* Integration with Cobbler, DNS and DHCP via the

External Nodes feature in puppet, would allow us
to define a node in Cobbler and have DNS, DHCP

and Puppet automatically configured.

* Move the above management services to single
KVM

* Generate daily report from Syslog-ng collector on
how many nodes updated vs failed to update,
with errors

References

* Puppet style guide
http://docs.puppetlabs.com/guides/
style guide

* Puppet best practices
http://projects.puppetlabs.com/projects/1/
wiki/Puppet Best Practice

USATLAS Meeting on Virtual Machines and

6/15/11 Configuration Management at BNL

16

