CMS Tracker Alignment Strategy with Cosmic Muons

Andrei Gritsan

Johns Hopkins University

FOR

CMS Tracker Alignment Group

June 15, 2009

3rd LHC Alignment Workshop, CERN, Switzerland

Tracker in the CMS Detector

Outline / Acknowledgment

- Input to CMS Tracker alignment algorithms:
 - Laser Alignment System
 - optical survey
 - tracks from cosmic muon runs ⇒ ultimate precision

Tracker Integration Facility (TIF) with partial Tracker in 2007 CMS at Point-5 ("CRAFT" cosmic run) with full Tracker in 2008

- Detailed results in the next talk (by E. Migliore)
- Alignment is a big project, but only the final step in commissioning

part of the CMS tracker alignment team "on the ground"

CMS Tracker Alignment Goal

• Alignment goal: nail down (few μ m) all 16,588 modules (× 6 dof)

Minimize residuals

$$\chi^2(\mathbf{p}_{ ext{modules}}, \mathbf{q}_{ ext{tracks}}) = \sum_{i=1}^{ ext{N}_{ ext{residuals}}} r_i^T \mathbf{V}_i^{-1} r_i$$

Laser Alignment System (LAS)

- See talk at 2nd LHC alignment workshop (June 2007):
 B. Wittmer "The Laser Alignment System of the CMS Tracker"
- Connect large structures (8 sectors in ϕ): TIB TOB TEC
- Cosmic runs for commissioning: standalone $\sim 100 \mu m$, relative $\sim 20 \mu m$
- Tracker geometry: note 2D (100 mrad strip angle) and 1D modules

Optical Survey of CMS Tracker

See talk at 2nd LHC alignment workshop (June 2007):

A.G. "First CMS Alignment Geometry: Survey Data and Their Implementation"

Barrels:

PXB - modules (2D only)

TIB - modules and up

TOB - barrel

Endcaps:

PXF - modules and up

TID - modules and up

TEC - disks and endcap

survey vs. design geometry

Tracks + Survey in "local algorithm", to constrain all 6 dof:

$$\chi_{\text{module}}^2 = \sum_{i}^{\text{hits}} r_i^T(\mathbf{p_m}) \mathbf{V}_i^{-1} r_i(\mathbf{p_m}) + \sum_{j}^{\text{survey}} r_{*j}^T(\mathbf{p_m}) \mathbf{V}_{*j}^{-1} r_{*j}(\mathbf{p_m})$$

following BABAR implementation: arXiv:0809.3823

Statistical Methods in CMS Tracker Alignment

Local iterative method ("Hits & Impact Points") CMS-NOTE-2006/018

$$\mathbf{p}_m = \left[\sum_i \mathbf{J}_i^T \mathbf{V}_i^{-1} \mathbf{J}_i\right]^{-1} \left[\sum_i \mathbf{J}_i^T \mathbf{V}_i^{-1} \mathbf{r}_i\right]$$

pros	full Kalman Filter track model	simple implementation, all dof
cons	ignore correlations in one iteration	large CPU with many iterations

• Global method ("Millepede II") NIM A 566, 5 (2006), talk by V. Blobel

$$\chi^{2}(\mathbf{p}, \mathbf{q}) = \sum_{j}^{\text{tracks hits}} \frac{(y_{ji} - f_{ji}(\mathbf{p}, \mathbf{q}_{j}))^{2}}{\sigma_{ji}^{2}}$$

CMS implementation

pros	model module correlations	less CPU with one or few iterations
cons	simple helix trajectory model	large matrix may limit N parameters

Kalman filter algorithm with MC and TIF data: see talk by E. Widl

Tracker Alignment at Integration Facility

• First integrated tracker: spring-summer 2007 arXiv:0904.1220

 ${\sim}15\%$ of strip tracker only no B-field, assume $p=1~{\rm GeV}/c$ \Rightarrow multiple scattering cannot be predicted per event

Side 1.

• Reach $\sim 50/80 \mu m$ in TOB/TIB

Alignment at Point-5 without Magnetic Field

First experience with full Tracker: summer 2008
 ~600k cosmic tracks for Tracker alignment still no B-field

- Achieved $\sim 30\text{-}40\mu\mathrm{m}$ in TIB/TOB low statistics in Pixels and Endcaps
- Measure of alignment precision
 Distribution of Mean of the Residuals ("DMR", more later)

Alignment at Point-5 with Magnetic Field

- Best data for alignment of CMS Tracker: fall 2008 ("CRAFT")
 - $\sim 4 \rm M$ cosmic tracks for Tracker alignment B-field = 3.8T \Rightarrow account for multiple scattering, $p>4~\rm GeV/c$
- Require good quality tracks and hits: clean hits, outlier hit rejection, χ^2 cut, min hits, 2D hits accept all good tracks (statistics limited): only 3%+1.5% in Pixels

Alignment Strategy during "CRAFT"

- Multi-step approach by both algorithms to address CMS geometry:
 - large structure movement: coherent v alignment of 1D modules
 - alignment of two sides of 2D strip modules (units): u, w, γ

- (1) large structures (6 dof) & units (3 dof)
- (2) module alignment: add α , β for TIB; 6 dof for PXB
- (3) repeat (1); note above: keep <46,300 parameters, use pre-sigma
- Local method: 5 steps from survey; \sim 50 iterations each
- (1) large structures (u, v, w, γ)
- (2),(3) Strip: modules (6 dof) with survey; units (3 dof)
- (4),(5) Pixels: ladders (6 dof); modules (6 dof)

Alignment Strategy: Merging Algorithms

- Combined method
- (1) run global method \Rightarrow solve global correlations efficiently
- (2) run local method \Rightarrow solve locally to match track model in all dof
- All three results are compatible, but combined is the best also compare to "not aligned"

Alignment Position Errors (APE) set for combined see next talk

Reference system: center-of-gravity and rotation move to design

Example: Pixel Residuals (local, global, combined)

• Residuals \leftarrow multiple scattering + hit errors + alignment errors (random) (random) (systematic)

 $r\phi$ pixel hit errors $\sim 19 \mu {
m m}$ here

Median of the Residuals

Again global + local → best combined

for example: PXB better local transverse, global longitudinal

Summary

CMS Tracker alignment with first data:

Tracker construction & survey in 2006-2008
Tracker integration cosmic run in 2007
global CMS cosmic runs in 2008

Successful CMS Tracker alignment algorithms:
 several complementary statistical methods
 best combination of global & local
 combine track + survey (done) and LAS (in progress) data

 Result in successful CMS Tracker alignment with cosmics but far from being done: cosmic and beam runs in 2009-2010 cosmics alone has limitations, see next talk...

Data Delivery: Alignment Workflow

- Track reco data: reduced skim "AlCaReco" for alignment see talk by G. Flucke about workflow tomorrow
- Result: 16,588 module Positions (6D) and Alignment Position Errors (APE, 3D)

