
WebOOT
Exploring plots in the browser

Peter Waller

ROOT Users Workshop

12th March 2013

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 1 / 24



Outline

• What is weboot?

• How is it made?

• Where to go from here?

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 2 / 24



What is WebOOT?

It's an application that you can run

from your home directory in a minute or so:

Example

git clone git://github.com/rootpy/WebOOT

python WebOOT/setup.py develop --user

${HOME}/.local/bin/pserve --reload development.ini

(then visit http://localhost:6543)

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 3 / 24

http://localhost:6543


What is WebOOT?

�How is it di�erent from that AJAX ROOT interface?�

�How is it di�erent from ROOT-js?�

�Why do I need this?�

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 4 / 24



What is WebOOT?

There is space for both server and client side applications:

• Client

• highly responsive
• can do fancy graphics
• (probably) has spare CPU

• Server

• has more knowledge

• of other available plots
• cache invalidation

• already has complete implementation of ROOT

• Wouter, fancy implementing RooFitJS?

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 5 / 24



What is WebOOT?

There is space for both server and client side applications:

• Client

• highly responsive
• can do fancy graphics
• (probably) has spare CPU

• Server

• has more knowledge

• of other available plots
• cache invalidation

• already has complete implementation of ROOT

• Wouter, fancy implementing RooFitJS?

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 5 / 24



What is WebOOT?

× �Souped up TBrowser�?

→ doesn't quite do it justice

× Static gallery of histograms?

→ nope

X Dynamic interface to ROOT �les

→ helps you jump to the next thing you'll want to look at
→ make many plots in one go

• Science and Validation!

• Look at same variables/histograms
in di�erent datasets and control regions

• Collaboration!

• �Hey Bob, take a look at this..�
*sends bob a link*

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 6 / 24



What is WebOOT?

× �Souped up TBrowser�?

→ doesn't quite do it justice

× Static gallery of histograms?

→ nope

X Dynamic interface to ROOT �les

→ helps you jump to the next thing you'll want to look at
→ make many plots in one go

• Science and Validation!

• Look at same variables/histograms
in di�erent datasets and control regions

• Collaboration!

• �Hey Bob, take a look at this..�
*sends bob a link*

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 6 / 24



What is WebOOT?

× �Souped up TBrowser�?

→ doesn't quite do it justice

× Static gallery of histograms?

→ nope

X Dynamic interface to ROOT �les

→ helps you jump to the next thing you'll want to look at
→ make many plots in one go

• Science and Validation!

• Look at same variables/histograms
in di�erent datasets and control regions

• Collaboration!

• �Hey Bob, take a look at this..�
*sends bob a link*

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 6 / 24



quick demo



How does it work?



Basic idea : organization

• The best code is that which is never needs to be written..

• It's usually possible to organize yourself purely on the �le system

(or within a ROOT �le)

• Self describing �les

• Don't need to introduce information from elsewhere
• i.e, little need for plotting scripts
• no need to keep histogramming and plotting code in sync

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 9 / 24



Basic idea : organization

• The best code is that which is never needs to be written..

• It's usually possible to organize yourself purely on the �le system

(or within a ROOT �le)

• Self describing �les

• Don't need to introduce information from elsewhere
• i.e, little need for plotting scripts
• no need to keep histogramming and plotting code in sync

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 9 / 24



Basic idea : traversal

WebOOT is based on the Pyramid1 framework (related to pylons)

.. and here is a quick introduction to �traversal�:

The logical content of a URL is represented by an object:

weboot.cern.ch/ ∼ pwaller︸ ︷︷ ︸
"URL fragment"

/sample.root/higgsmu

→
base[�∼pwaller�][�sample.root�][�higgsmu�]

== [ROOT histogram wrapped by WebOOT class]

1http://www.pylonsproject.org/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 10 / 24

http://www.pylonsproject.org/


Basic idea : traversal

WebOOT is based on the Pyramid1 framework (related to pylons)

.. and here is a quick introduction to �traversal�:

The logical content of a URL is represented by an object:

weboot.cern.ch/ ∼ pwaller︸ ︷︷ ︸
"URL fragment"

/sample.root/higgsmu

→
base[�∼pwaller�][�sample.root�][�higgsmu�]

== [ROOT histogram wrapped by WebOOT class]

1http://www.pylonsproject.org/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 10 / 24

http://www.pylonsproject.org/


Basic idea : traversal

WebOOT is based on the Pyramid1 framework (related to pylons)

.. and here is a quick introduction to �traversal�:

The logical content of a URL is represented by an object:

weboot.cern.ch/ ∼ pwaller︸ ︷︷ ︸
"URL fragment"

/sample.root/higgsmu

→
base[�∼pwaller�][�sample.root�][�higgsmu�]

== [ROOT histogram wrapped by WebOOT class]

1http://www.pylonsproject.org/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 10 / 24

http://www.pylonsproject.org/


More traversal

base[�∼pwaller�][�sample.root�][�higgsmu�]

This looks like a nested dictionary..

base = {

�∼pwaller�: {

�sample.root�: {

�higgsmu�: RootHistogram(... TH1 somehow gets here ...)

}

}

}

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 11 / 24



Object hierarchy

... except really they're objects which behave like dictionaries:

base = WebOOT({

�∼pwaller� : FileSystemUserArea({

�sample.root� : RootFile({

�histogram� : RootHistogram(... TH1 somehow gets here ...)

})

})

})

the contents of the dictionaries don't really exist.

(they appear on demand, as if by magic)

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 12 / 24



Object hierarchy

... except really they're objects which behave like dictionaries:

base = WebOOT({

�∼pwaller� : FileSystemUserArea({

�sample.root� : RootFile({

�histogram� : RootHistogram(... TH1 somehow gets here ...)

})

})

})

the contents of the dictionaries don't really exist.

(they appear on demand, as if by magic)

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 12 / 24



Resources and Views

Example of resources:

• Tree

• Histogram

• Directory

Given a resource, a view is chosen which can

turn it into HTML or PNG or <format of your choice>

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 13 / 24



Actions

• ! is used to denote actions

• Actions are just python functions de�ned on resources with the

@action decorator

Conceptually:

@action

def project(self, parent, key, axes):

if axes == "x":

p = self.o.ProjectionX()

elif :

p = self.o.ProjectionY()

else:

raise BadParameters("Expected x or y")

return Histogram.from_parent(parent, key, p)

.. is called when myhistogram/!project/x/ is visited.

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 14 / 24



Jump bar

�What does this plot look like with a di�erent set of cuts?�

Each part of the URL has a dropdown containing valid places to jump to

• �What do these cuts look like on that other variable?�

• �What did this plot look like in the previous iteration of the analysis?�

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 15 / 24



Jump bar

�What does this plot look like with a di�erent set of cuts?�

Each part of the URL has a dropdown containing valid places to jump to

• �What do these cuts look like on that other variable?�

• �What did this plot look like in the previous iteration of the analysis?�

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 15 / 24



Now it gets interesting...

weboot.cern.ch/∼pwaller/*.root/really_important_plot

This object is a �Multi-traverser�

.. It abstractly represents a tree of objects of arbitrary dimension



Now it gets interesting...

weboot.cern.ch/∼pwaller/*.root/really_important_plot

This object is a �Multi-traverser�

.. It abstractly represents a tree of objects of arbitrary dimension



Multi-traversing and wild cards

Model:

1 Make one (stacked) plot which looks how you want

2 Jump to other similar plots using the jump-bar

3 Now make the plots

• for all samples, or
• for all variables

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 17 / 24



Composition

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 18 / 24



Little tricks which make it work

• Caching

• Information for jump-bar is computed once and reused

• TCanvas.SaveAs(�.eps�) is faster than .png, so convert is run.

• Yields GIL, faster, better quality plots with antialiasing
• Really shines on a multicore machine

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 19 / 24



Platform as a service

weboot.cern.ch?

uses CERN's VMM infrastructure. Spinning up a machine is easy.

Ideally, user can:

• Place their �le on AFS: ∼username/weboot/file.root
• Set appropriate permissions:

fs sa weboot:atlas-viewable ∼username/weboot
(or, hypothetically, weboot:user-viewable to keep your super secret
discovery to yourself)

• Visit https://weboot.cern.ch/∼username/file.root
• See old plots, press F5, see new plots exactly aligned

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 20 / 24



Platform as a service

weboot.cern.ch?

uses CERN's VMM infrastructure. Spinning up a machine is easy.

Ideally, user can:

• Place their �le on AFS: ∼username/weboot/file.root
• Set appropriate permissions:

fs sa weboot:atlas-viewable ∼username/weboot
(or, hypothetically, weboot:user-viewable to keep your super secret
discovery to yourself)

• Visit https://weboot.cern.ch/∼username/file.root
• See old plots, press F5, see new plots exactly aligned

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 20 / 24



Potential problems

• People often don't actually want to share data

.. (except when they do want to)

• The URL isn't actually a great place to

do things with semi-complicated syntax

• Security, Stability and Scaling

• sandboxing? LXC?
• DOS?
• ROOT crashes? (rare, but may want to isolate)
• Many cored non-VM machines run like the wind
• Many VMs, load balanced
• Caching and cache invalidation

• HTTP Proxy?

• UI could use some polish..

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 21 / 24



Potential problems

• People often don't actually want to share data

.. (except when they do want to)

• The URL isn't actually a great place to

do things with semi-complicated syntax

• Security, Stability and Scaling

• sandboxing? LXC?
• DOS?
• ROOT crashes? (rare, but may want to isolate)
• Many cored non-VM machines run like the wind
• Many VMs, load balanced
• Caching and cache invalidation

• HTTP Proxy?

• UI could use some polish..

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 21 / 24



Potential problems

• People often don't actually want to share data

.. (except when they do want to)

• The URL isn't actually a great place to

do things with semi-complicated syntax

• Security, Stability and Scaling

• sandboxing? LXC?
• DOS?
• ROOT crashes? (rare, but may want to isolate)
• Many cored non-VM machines run like the wind
• Many VMs, load balanced
• Caching and cache invalidation

• HTTP Proxy?

• UI could use some polish..

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 21 / 24



Potential problems

• People often don't actually want to share data

.. (except when they do want to)

• The URL isn't actually a great place to

do things with semi-complicated syntax

• Security, Stability and Scaling

• sandboxing? LXC?
• DOS?
• ROOT crashes? (rare, but may want to isolate)
• Many cored non-VM machines run like the wind
• Many VMs, load balanced
• Caching and cache invalidation

• HTTP Proxy?

• UI could use some polish..

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 21 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



(sidenote) a4store : organize your histograms

One-line histogram & cut�ow storage, initialization, and �lling

S.T<H1>("m_ee")("ee-Mass")(500,0,100,"m_ee").fill(m);

• Easy to reuse histogram de�nitions in functions:

void plot(ObjectStore FS, LorentzVector v) {

FS.T<H1>("m")("Mass")(500,0,100,"m [GeV]").fill(v.m());

FS.T<H1>("pt")("p_T")(500,0,100,"pT [GeV]").fill(v.pt());

}

plot(S("initial/muon0_"), mu0); // gives initial/muon0_pt

S.T<Cutflow>("cf").passed("initial"); // create cutflow

if (mu0.pt() < 20*GeV) return; // Cut

S.T<Cutflow>("cf").passed("20GeV");
plot(S("cut1/muon0_"), mu0);

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 22 / 24



a4store performance

• Highly e�cient, doesn't use string comparisons

for strings living in read-only memory (!)

• i.e, �text like this� uses pointer lookup in hashmap
but not std::string().c_str()

• cost is around 40 instructions per �ll after initialization

• It's great for making many plots and doing systematic studies

• A version with ROOT histograms is not so hard to make2

• (if there is interest)

• Disadvantage:

• not so great for compile time

2https://github.com/a4/a4store/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 23 / 24

https://github.com/a4/a4store/


a4store performance

• Highly e�cient, doesn't use string comparisons

for strings living in read-only memory (!)

• i.e, �text like this� uses pointer lookup in hashmap
but not std::string().c_str()

• cost is around 40 instructions per �ll after initialization

• It's great for making many plots and doing systematic studies

• A version with ROOT histograms is not so hard to make2

• (if there is interest)

• Disadvantage:

• not so great for compile time

2https://github.com/a4/a4store/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 23 / 24

https://github.com/a4/a4store/


a4store performance

• Highly e�cient, doesn't use string comparisons

for strings living in read-only memory (!)

• i.e, �text like this� uses pointer lookup in hashmap
but not std::string().c_str()

• cost is around 40 instructions per �ll after initialization

• It's great for making many plots and doing systematic studies

• A version with ROOT histograms is not so hard to make2

• (if there is interest)

• Disadvantage:

• not so great for compile time

2https://github.com/a4/a4store/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 23 / 24

https://github.com/a4/a4store/


a4store performance

• Highly e�cient, doesn't use string comparisons

for strings living in read-only memory (!)

• i.e, �text like this� uses pointer lookup in hashmap
but not std::string().c_str()

• cost is around 40 instructions per �ll after initialization

• It's great for making many plots and doing systematic studies

• A version with ROOT histograms is not so hard to make2

• (if there is interest)

• Disadvantage:

• not so great for compile time

2https://github.com/a4/a4store/
Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 23 / 24

https://github.com/a4/a4store/


Future

• Now a part of the rootpy organization, so bus number > 1

• https://github.com/rootpy/WebOOT

• Feel free to steal whatever is worth stealing!

• Let me know if you encounter problems on the github issue tracker

• Platform as a service seems like a neat idea - no friction for users

• I'd love to hear from you, come and �nd me

Peter Waller (ROOT Users Workshop) WebOOT 12th March 2013 24 / 24

https://github.com/rootpy/WebOOT
https://github.com/rootpy/WebOOT/issues/new

