
The hierarchy problem

(On the origin of the Higgs potential)



Electroweak symmetry breaking (EWSB) in the SM
is triggered by the Higgs VEV:

Why so different?

V (h) = −1
2
µ2h2 +

1
4
λh4

µ2 = λv2 =
λ

g2
4M2

W ∼ 104 GeV2 << M2
P ∼ 1038 GeV2



Even worse, at the quantum level, scalar masses
 are extremely sensitive to heavy states

h h ∼ 1
16π2

M2

mass of the particle 
in the loop



mΨ̄LΨR vs µ
2|H|2

Always a singlet 
under phase 

transformations

Not a singlet if
 ΨR transform:

{ {

ΨR → eiθΨR

Not the same situation for fermions or gauge bosons 
➠ gauge symmetries can protect them

No symmetry in the SM protects the Higgs mass

Expected: µ2 ∼ heavier scale²  ~  MGUT², MP², Mstring² 

➥ This is the hierarchy problem

(chiral symmetry)

In general:



Let me emphasize that is not a problem 
of consistency but of naturalness

Example:

Fine-tune system
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FIG. 1 Data from Onnes’ pioneering works. The plot shows the electric resistance of the mercury vs. temperature.

therefore, due to the Maxwell equation

∇ ∧E = −1
c

∂B
∂t

, (1.1)

the magnetic field is frozen, whereas it is expelled. This implies that superconductivity will be destroyed by a critical
magnetic field Hc such that

fs(T ) +
H

2
c (T )
8π

= fn(T ) , (1.2)

where fs,n(T ) are the densities of free energy in the the superconducting phase at zero magnetic field and the density
of free energy in the normal phase. The behavior of the critical magnetic field with temperature was found empirically
to be parabolic (see Fig. 2)
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FIG. 2 The critical field vs. temperature.
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Analogy with Superconductivity

Higgs Model  ⇔ GL Model
EWSB ⇔  Breaking of U(1)EM 

�h� = �e−e−�

Give the GL Model a 
good description 

of superconductors?
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NO, it only works close
 to the critical line

Analogy with Superconductivity

Higgs Model  ⇔ GL Model
EWSB ⇔  Breaking of U(1)EM 

Give the GL Model a 
good description 

of superconductors?

only there        is small and it 
makes sense to Taylor-expand 

the potential:

V (h) = m2|h|2 + λ|h|4 + · · ·

�h� = �e−e−�

�h� = 0

�h� �= 0

Tc

Bc

�h�



Possibilities that theorists envisage 
to tackle the Hierarchy Problem:

1) Supersymmetry: 
    Protecting the Higgs mass by a symmetry 

2) Composite Higgs: The Higgs is not elementary:

As in superconductivity:  h ~ ee
or QCD:  pions ~ qq-

3) Large extra dimensions: 
    Gravity strong at the EW-scale:  Λ ~ Mstring ~ TeV

➥ In all cases New Physics at ~TeV

Strong motivation for the LHC !



Supersymmetry

Following notation and formulae of
“A Supersymmetry Primer”, Stephen P. Martin

(hep-ph/9709356)



We want a symmetry to protect the Higgs mass:

Idea:        Scalar                       Fermion
symmetry  trans.

since fermion masses 
protected by chiral 

symmetryIt exists, it is a Supersymmetry:

Simplest case: 
Ψ
Φ

=  Majorana fermion
=  Complex scalar

Φ→ Φ + δΦ
Ψ→ Ψ + δΨ

Invariant under:
δΦ→ ξ̄ (1− γ5)Ψ
δΨ→ i(1− γ5)γµξ ∂µΦ

Parameter of the trans. 
being a Majorana fermionThe scalar must be massless!!

L = |∂µΦ|2 + i
1
2
Ψ̄/∂Ψ



Supersymmetry Algebra

The systematic cancellation of the dangerous contributions to ∆m2
H can only be brought about by

the type of conspiracy that is better known to physicists as a symmetry. Comparing eqs. (1.2) and
(1.3) strongly suggests that the new symmetry ought to relate fermions and bosons, because of the
relative minus sign between fermion loop and boson loop contributions to ∆m2

H . (Note that λS must
be positive if the scalar potential is to be bounded from below.) If each of the quarks and leptons of the
Standard Model is accompanied by two complex scalars with λS = |λf |2, then the Λ2

UV contributions of
Figures 1.1a and 1.1b will neatly cancel [3]. Clearly, more restrictions on the theory will be necessary to
ensure that this success persists to higher orders, so that, for example, the contributions in Figure 1.2
and eq. (1.4) from a very heavy fermion are canceled by the two-loop effects of some very heavy
bosons. Fortunately, the cancellation of all such contributions to scalar masses is not only possible,
but is actually unavoidable, once we merely assume that there exists a symmetry relating fermions and
bosons, called a supersymmetry.

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa. The
operator Q that generates such transformations must be an anticommuting spinor, with

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (1.5)

Spinors are intrinsically complex objects, so Q† (the hermitian conjugate of Q) is also a symmetry
generator. Because Q and Q† are fermionic operators, they carry spin angular momentum 1/2, so it is
clear that supersymmetry must be a spacetime symmetry. The possible forms for such symmetries in
an interacting quantum field theory are highly restricted by the Haag-Lopuszanski-Sohnius extension
of the Coleman-Mandula theorem [4]. For realistic theories that, like the Standard Model, have chiral
fermions (i.e., fermions whose left- and right-handed pieces transform differently under the gauge group)
and thus the possibility of parity-violating interactions, this theorem implies that the generators Q and
Q† must satisfy an algebra of anticommutation and commutation relations with the schematic form

{Q,Q†} = Pµ, (1.6)

{Q,Q} = {Q†, Q†} = 0, (1.7)

[Pµ, Q] = [Pµ, Q†] = 0, (1.8)

where Pµ is the four-momentum generator of spacetime translations. Here we have ruthlessly sup-
pressed the spinor indices on Q and Q†; after developing some notation we will, in section 3.1, derive
the precise version of eqs. (1.6)-(1.8) with indices restored. In the meantime, we simply note that the
appearance of Pµ on the right-hand side of eq. (1.6) is unsurprising, since it transforms under Lorentz
boosts and rotations as a spin-1 object while Q and Q† on the left-hand side each transform as spin-1/2
objects.

The single-particle states of a supersymmetric theory fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both fermion and boson
states, which are commonly known as superpartners of each other. By definition, if |Ω〉 and |Ω′〉 are
members of the same supermultiplet, then |Ω′〉 is proportional to some combination of Q and Q†

operators acting on |Ω〉, up to a spacetime translation or rotation. The squared-mass operator −P 2

commutes with the operators Q, Q†, and with all spacetime rotation and translation operators, so
it follows immediately that particles inhabiting the same irreducible supermultiplet must have equal
eigenvalues of −P 2, and therefore equal masses.

The supersymmetry generators Q,Q† also commute with the generators of gauge transformations.
Therefore particles in the same supermultiplet must also be in the same representation of the gauge
group, and so must have the same electric charges, weak isospin, and color degrees of freedom.

Each supermultiplet contains an equal number of fermion and boson degrees of freedom. To prove
this, consider the operator (−1)2s where s is the spin angular momentum. By the spin-statistics
theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting on a
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(Maximal extension of Poincare in a QFT)
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Q commutes with P² and any generator of the gauge symmetries:

Minimal SUSY (N=1):  One extra generator Q

The Fermion and Boson have equal masses and charges

Schematic form: [Q, Mµν ] = Q



Minimal Supersymmetric SM (MSSM)

Imposing supersymmetry to the SM ➡ MSSM

The spectrum is doubled:

SM fermion ➡  New scalar (s-”...”)
SM boson ➡  New majorana fermion

                               (“ ...“-ino)



... but not yet realistic:

The model has a quantum anomaly (due to the Higgsino)
 and the down-quarks and leptons are massless 

Extra Higgs needed 
      ➡  Two Higgs doublets:

Hu : (1, 2, 1)
Hd : (1, 2,−1)

➞ give mass to the up quarks

➞ give mass to the down quarks
            and leptons

+ two Higgsino doublets:

�Hu : (1, 2, 1)
�Hd : (1, 2,−1)



Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗
R u†

R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields
are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

completely different reason: because of the structure of supersymmetric theories, only a Y = 1/2 Higgs
chiral supermultiplet can have the Yukawa couplings necessary to give masses to charge +2/3 up-type
quarks (up, charm, top), and only a Y = −1/2 Higgs can have the Yukawa couplings necessary to give
masses to charge −1/3 down-type quarks (down, strange, bottom) and to the charged leptons. We
will call the SU(2)L-doublet complex scalar fields with Y = 1/2 and Y = −1/2 by the names Hu and
Hd, respectively.† The weak isospin components of Hu with T3 = (1/2, −1/2) have electric charges
1, 0 respectively, and are denoted (H+

u , H0
u). Similarly, the SU(2)L-doublet complex scalar Hd has

T3 = (1/2, −1/2) components (H0
d , H−

d ). The neutral scalar that corresponds to the physical Standard
Model Higgs boson is in a linear combination of H0

u and H0
d ; we will discuss this further in section 7.1.

The generic nomenclature for a spin-1/2 superpartner is to append “-ino” to the name of the Standard
Model particle, so the fermionic partners of the Higgs scalars are called higgsinos. They are denoted
by H̃u, H̃d for the SU(2)L-doublet left-handed Weyl spinor fields, with weak isospin components H̃+

u ,
H̃0

u and H̃0
d , H̃−

d .
We have now found all of the chiral supermultiplets of a minimal phenomenologically viable exten-

sion of the Standard Model. They are summarized in Table 1.1, classified according to their transfor-
mation properties under the Standard Model gauge group SU(3)C ×SU(2)L ×U(1)Y , which combines
uL, dL and ν, eL degrees of freedom into SU(2)L doublets. Here we follow a standard convention, that
all chiral supermultiplets are defined in terms of left-handed Weyl spinors, so that the conjugates of
the right-handed quarks and leptons (and their superpartners) appear in Table 1.1. This protocol for
defining chiral supermultiplets turns out to be very useful for constructing supersymmetric Lagrangi-
ans, as we will see in section 3. It is also useful to have a symbol for each of the chiral supermultiplets
as a whole; these are indicated in the second column of Table 1.1. Thus, for example, Q stands for
the SU(2)L-doublet chiral supermultiplet containing ũL, uL (with weak isospin component T3 = 1/2),

and d̃L, dL (with T3 = −1/2), while u stands for the SU(2)L-singlet supermultiplet containing ũ∗
R, u†

R.
There are three families for each of the quark and lepton supermultiplets, Table 1.1 lists the first-family
representatives. A family index i = 1, 2, 3 can be affixed to the chiral supermultiplet names (Qi, ui, . . .)
when needed, for example (e1, e2, e3) = (e, µ, τ). The bar on u, d, e fields is part of the name, and does
not denote any kind of conjugation.

The Higgs chiral supermultiplet Hd (containing H0
d , H−

d , H̃0
d , H̃−

d ) has exactly the same Standard
Model gauge quantum numbers as the left-handed sleptons and leptons Li, for example (ν̃, ẽL, ν,
eL). Naively, one might therefore suppose that we could have been more economical in our assignment

†Other notations in the literature have H1, H2 or H,H instead of Hu, Hd. The notation used here has the virtue of
making it easy to remember which Higgs VEVs gives masses to which type of quarks.
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

by taking a neutrino and a Higgs scalar to be superpartners, instead of putting them in separate
supermultiplets. This would amount to the proposal that the Higgs boson and a sneutrino should be the
same particle. This attempt played a key role in some of the first attempts to connect supersymmetry to
phenomenology [5], but it is now known to not work. Even ignoring the anomaly cancellation problem
mentioned above, many insoluble phenomenological problems would result, including lepton-number
non-conservation and a mass for at least one of the neutrinos in gross violation of experimental bounds.
Therefore, all of the superpartners of Standard Model particles are really new particles, and cannot be
identified with some other Standard Model state.

The vector bosons of the Standard Model clearly must reside in gauge supermultiplets. Their
fermionic superpartners are generically referred to as gauginos. The SU(3)C color gauge interactions
of QCD are mediated by the gluon, whose spin-1/2 color-octet supersymmetric partner is the gluino. As
usual, a tilde is used to denote the supersymmetric partner of a Standard Model state, so the symbols
for the gluon and gluino are g and g̃ respectively. The electroweak gauge symmetry SU(2)L ×U(1)Y is
associated with spin-1 gauge bosons W+,W 0,W− and B0, with spin-1/2 superpartners W̃+, W̃ 0, W̃−

and B̃0, called winos and bino. After electroweak symmetry breaking, the W 0, B0 gauge eigenstates
mix to give mass eigenstates Z0 and γ. The corresponding gaugino mixtures of W̃ 0 and B̃0 are called
zino (Z̃0) and photino (γ̃); if supersymmetry were unbroken, they would be mass eigenstates with
masses mZ and 0. Table 1.2 summarizes the gauge supermultiplets of a minimal supersymmetric
extension of the Standard Model.

The chiral and gauge supermultiplets in Tables 1.1 and 1.2 make up the particle content of the
Minimal Supersymmetric Standard Model (MSSM). The most obvious and interesting feature of this
theory is that none of the superpartners of the Standard Model particles has been discovered as of
this writing. If supersymmetry were unbroken, then there would have to be selectrons ẽL and ẽR with
masses exactly equal to me = 0.511... MeV. A similar statement applies to each of the other sleptons
and squarks, and there would also have to be a massless gluino and photino. These particles would have
been extraordinarily easy to detect long ago. Clearly, therefore, supersymmetry is a broken symmetry
in the vacuum state chosen by Nature.

An important clue as to the nature of supersymmetry breaking can be obtained by returning
to the motivation provided by the hierarchy problem. Supersymmetry forced us to introduce two
complex scalar fields for each Standard Model Dirac fermion, which is just what is needed to enable a
cancellation of the quadratically divergent (Λ2

UV) pieces of eqs. (1.2) and (1.3). This sort of cancellation
also requires that the associated dimensionless couplings should be related (for example λS = |λf |2).
The necessary relationships between couplings indeed occur in unbroken supersymmetry, as we will
see in section 3. In fact, unbroken supersymmetry guarantees that the quadratic divergences in scalar
squared masses must vanish to all orders in perturbation theory.‡ Now, if broken supersymmetry is still
to provide a solution to the hierarchy problem even in the presence of supersymmetry breaking, then

‡A simple way to understand this is to recall that unbroken supersymmetry requires the degeneracy of scalar and
fermion masses. Radiative corrections to fermion masses are known to diverge at most logarithmically in any renormal-
izable field theory, so the same must be true for scalar masses in unbroken supersymmetry.

9

MSSM Spectrum

Squarks

Sleptons

Higgsinos

Gauginos

particles:  R-parity = 1
superpartners: R-parity = -1

1) Superpart. interact in pairs
2) Lightest superpart. stable



Type of interactions

tL t†R

H0
u

(a)

t̃L t†R

H̃0
u

(b)

tL t̃∗R

H̃0
u

(c)

Figure 5.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.

space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (5.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βεαβ, where
εαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βεαβ, where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .

The µ term in eq. (5.1) is the supersymmetric version of the Higgs boson mass in the Standard
Model. It is unique, because terms H∗

uHu or H∗
dHd are forbidden in the superpotential, which must be

analytic in the chiral superfields (or equivalently in the scalar fields) treated as complex variables, as
shown in section 3.2. We can also see from the form of eq. (5.1) why both Hu and Hd are needed in order
to give Yukawa couplings, and thus masses, to all of the quarks and leptons. Since the superpotential
must be analytic, the uQHu Yukawa terms cannot be replaced by something like uQH∗

d . Similarly,
the dQHd and eLHd terms cannot be replaced by something like dQH∗

u and eLH∗
u. The analogous

Yukawa couplings would be allowed in a general non-supersymmetric two Higgs doublet model, but are
forbidden by the structure of supersymmetry. So we need both Hu and Hd, even without invoking the
argument based on anomaly cancellation mentioned in the Introduction.

The Yukawa matrices determine the current masses and CKM mixing angles of the ordinary quarks
and leptons, after the neutral scalar components of Hu and Hd get VEVs. Since the top quark, bottom
quark and tau lepton are the heaviest fermions in the Standard Model, it is often useful to make an
approximation that only the (3, 3) family components of each of yu, yd and ye are important:

yu ≈




0 0 0
0 0 0
0 0 yt



 , yd ≈




0 0 0
0 0 0
0 0 yb



 , ye ≈




0 0 0
0 0 0
0 0 yτ



 . (5.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpotential. It is
instructive to write the superpotential in terms of the separate SU(2)L weak isospin components
[Q3 = (t b), L3 = (ντ τ), Hu = (H+

u H0
u), Hd = (H0

d H−
d ), u3 = t, d3 = b, e3 = τ ], so:

WMSSM ≈ yt(ttH
0
u − tbH+

u ) − yb(btH
−
d − bbH0

d) − yτ (τντH
−
d − ττH0

d)

+µ(H+
u H−

d − H0
uH0

d). (5.3)

The minus signs inside the parentheses appear because of the antisymmetry of the εαβ symbol used to
tie up the SU(2)L indices. The other minus signs in eq. (5.1) were chosen so that the terms ytttH0

u,
ybbbH0

d , and yτττH0
d , which will become the top, bottom and tau masses when H0

u and H0
d get VEVs,

each have overall positive signs in eq. (5.3).
Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-

metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 5.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 5.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (5.3). For variety,
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Getting them from “supersymmetrization”:
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0 0 0
0 0 yτ



 . (5.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpotential. It is
instructive to write the superpotential in terms of the separate SU(2)L weak isospin components
[Q3 = (t b), L3 = (ντ τ), Hu = (H+
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tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Figure 3.2: Supersymmetric dimensionful couplings: (a) (scalar)3 interaction vertex M∗
inyjkn and (b)

the conjugate interaction M iny∗jkn, (c) fermion mass term M ij and (d) conjugate fermion mass term

M∗
ij , and (e) scalar squared-mass term M∗

ikM
kj.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.3: Supersymmetric gauge interaction vertices.

tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Up to scalar trilinear and quartics:
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(d)

Figure 4.1: Soft supersymmetry-breaking terms: (a) Gaugino mass Ma; (b) non-analytic scalar squared
mass (m2)ij ; (c) analytic scalar squared mass bij; and (d) scalar cubic coupling aijk.

that are singlets or in the adjoint representation of a simple factor of the gauge group, then there are
also possible soft supersymmetry-breaking Dirac mass terms between the corresponding fermions ψa

and the gauginos [54]-[59]:

L = −Ma
Diracλ

aψa + c.c. (4.3)

This is not relevant for the MSSM with minimal field content, which does not have adjoint represen-
tation chiral supermultiplets. Therefore, equation (4.1) is usually taken to be the general form of the
soft supersymmetry-breaking Lagrangian. For some interesting exceptions, see refs. [54]-[65].

The terms in Lsoft clearly do break supersymmetry, because they involve only scalars and gauginos
and not their respective superpartners. In fact, the soft terms in Lsoft are capable of giving masses to all
of the scalars and gauginos in a theory, even if the gauge bosons and fermions in chiral supermultiplets
are massless (or relatively light). The gaugino masses Ma are always allowed by gauge symmetry. The
(m2)ij terms are allowed for i, j such that φi, φj∗ transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j, so every scalar
is eligible to get a mass in this way if supersymmetry is broken. The remaining soft terms may or may
not be allowed by the symmetries. The aijk, bij , and ti terms have the same form as the yijk, M ij ,
and Li terms in the superpotential [compare eq. (4.1) to eq. (3.47) or eq. (3.77)], so they will each be
allowed by gauge invariance if and only if a corresponding superpotential term is allowed.

The Feynman diagram interactions corresponding to the allowed soft terms in eq. (4.1) are shown
in Figure 4.1. For each of the interactions in Figures 4.1a,c,d there is another with all arrows reversed,
corresponding to the complex conjugate term in the Lagrangian. We will apply these general results
to the specific case of the MSSM in the next section.

5 The Minimal Supersymmetric Standard Model

In sections 3 and 4, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

5.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (5.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.
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Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1
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much greater than the top quark mass mt, one finds a large positive
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This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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But if supersymmetry is exact: 
MF = MB  ➡  e.g. Me = Mẽ

It must be broken to give masses to the superpartners

Supersymmetry breaking must afford “soft terms”:
(terms that do not spoil the good UV properties of the Susy)

Model particles and the Higgs bosons have even R-parity (PR = +1), while all of the squarks, sleptons,
gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [73] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [74] can exist provided that they satisfy certain anomaly cancellation
conditions [75] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [76, 77], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [77]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [77, 78]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 10.1.

5.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 4, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃† m2
Q Q̃ − L̃† m2

L L̃ − ũm2
u ũ

† − d̃m2
d

d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + c.c.) . (5.12)

36 for 3 families, more than100 
terms are possible!!

+µH̃uH̃d



How supersymmetry works?

0 50 100 150 200 250 300
Hu  [GeV]

0

20

40

60

H
d  [

G
eV

]

Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
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the orthogonal steeper direction corresponds to the mass eigenstate H0.
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Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln
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mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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Constraints on superpartner masses 
from flavor physics:
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(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.
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mixing in models with strangeness-
violating soft supersymmetry breaking parameters (indicated by ×). These diagrams contribute to
constraints on the off-diagonal elements of (a) m2

d
, (b) the combination of m2

d
and m2

Q, and (c) ad.

the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [106]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 5.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 5.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.

Furthermore, after the Higgs scalars get VEVs, the ae matrix could imply squared-mass terms that
mix left-handed and right-handed sleptons with different lepton flavors. For example, LMSSM

soft contains
ẽaeL̃Hd + c.c. which implies terms −〈H0

d〉(ae)12ẽ∗Rµ̃L − 〈H0
d〉(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 5.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
by experiment to be small, but in a way that is more strongly dependent on other model parameters
[85]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [86], by the
experimental limits on Br(τ → eγ) and Br(τ → µγ).

There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0

mixing
gets contributions from the diagrams in Figure 5.7, among others, if LMSSM

soft contains terms that mix
down squarks and strange squarks. The gluino-squark-quark vertices in Figure 5.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [106]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 5.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 5.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.

Furthermore, after the Higgs scalars get VEVs, the ae matrix could imply squared-mass terms that
mix left-handed and right-handed sleptons with different lepton flavors. For example, LMSSM

soft contains
ẽaeL̃Hd + c.c. which implies terms −〈H0

d〉(ae)12ẽ∗Rµ̃L − 〈H0
d〉(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 5.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
by experiment to be small, but in a way that is more strongly dependent on other model parameters
[85]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [86], by the
experimental limits on Br(τ → eγ) and Br(τ → µγ).

There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0

mixing
gets contributions from the diagrams in Figure 5.7, among others, if LMSSM

soft contains terms that mix
down squarks and strange squarks. The gluino-squark-quark vertices in Figure 5.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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Soft terms must be generated in a clever way

Most interesting possibilities:

1) Gauge mediation

2) Gravity/Moduli/Extra-dim mediation



The famous scenario “minimal sugra” 
not a model, just an Ansatz: 

All gaugino masses equal = M1/2

All scalar masses equal = M0

All trilinear equal = A0

At Q=MGUT

➥ Why?
I don’t know, 

but experimentalists 
like it a lot!
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

a reasonable approximation, the entire mass spectrum in minimal supergravity models is determined
by only five unknown parameters: m2

0, m1/2, A0, tan β, and Arg(µ), while in the simplest gauge-
mediated supersymmetry breaking models one can pick parameters Λ, Mmess, N5, 〈F 〉, tan β, and
Arg(µ). Both frameworks are highly predictive. Of course, it is easy to imagine that the essential
physics of supersymmetry breaking is not captured by either of these two scenarios in their minimal
forms. For example, the anomaly mediated contributions could play a role, perhaps in concert with
the gauge-mediation or Planck-scale mediation mechanisms.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [204]-[213],[194].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
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gauge bosons

1) Gauge mediation

Susy breaking sector

MSSM

Gauge interactions are “flavor blind”:
Universal masses for squarks/sleptons with equal charges

New sector



Very predictive (in the minimal case). 
Just calculate loops:

Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]

, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [160] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)

+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:

( |y2〈S〉|2 −y∗2〈F ∗
S〉

−y2〈FS〉 |y2〈S〉|2
)

(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [159] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of
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Depends on 3 parameters: 
1) μ-term: Higgsino mass
2) Susy-breaking scale:  F 
3) Scale where the soft-terms
    are induced:  M
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Predicts a very light gravitino = Mass suppressed by MP:

➥ Lightest Superparticle

the condition of vanishing cosmological constant, is given by [272, 81]

m3/2 =
F0√
3MP

. (3.1)

Here MP = (8πGN)−1/2 = 2.4×1018 GeV is the reduced Planck mass. We denote by F0 the total

contribution of the supersymmetry-breaking VEV of the auxiliary fields, normalized in such a

way that the vacuum energy of the globally supersymmetric theory is V = F 2
0 . Thus F0 does

not coincide with the definition of F , which appears in the sparticle masses through Λ = F/M .

While F0 is the fundamental scale of supersymmetry breaking, F is the scale of supersymmetry

breaking felt by the messenger particles, i.e. the mass splitting inside their supermultiplets. The

ratio k ≡ F/F0 depends on how supersymmetry breaking is communicated to the messengers.

If the communication occurs via a direct interaction, this ratio is just given by a coupling

constant, like the parameter λ in the case described by eq. (2.5). It can be argued that this

coupling should be smaller than 1, by requiring perturbativity up to the GUT scale [16]. If the

communication occurs radiatively, then k is given by some loop factor, and therefore it is much

smaller than 1. We thus rewrite the gravitino mass as

m3/2 =
F

k
√

3MP

=
1

k

(
√

F

100 TeV

)2

2.4 eV , (3.2)

where the model-dependent coefficient k is such that k < 1, and possibly k $ 1.

In gauge-mediated models, the gravitino is the lightest supersymmetric particle (LSP) for

any relevant value of F . Indeed, as argued in sect. 2.4, a safe solution to the flavour problem

requires that gravity-mediated contributions to the sparticle spectrum should be much smaller

than gauge-mediated contributions. Since m3/2 is exactly the measure of gravity-mediated

effects, it is indeed the solution of the flavour problem in gauge mediation, see eq. (2.44), which

implies that the gravitino is the LSP.

If R parity is conserved, all supersymmetric particles follow decay chains that lead to grav-

itinos. In order to compute the decay rate we need to know the interaction Lagrangian at lowest

order in the gravitino field. Since, for
√

F $ MP , the dominant gravitino interactions come

from its spin-1/2 component, the interaction Lagrangian can be computed in the limit of global

supersymmetry. In the presence of spontaneous supersymmetry breaking, the supercurrent Jµ
Q

satisfies the equation

∂µJ
µ
Q = −F0γ

µ∂µG̃ , (3.3)
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2) Gravity/Moduli/Extra-dim mediation:

Susy-breaking

...to be discussed later

MSSM Matter

Quantum corrections in AdS5

AdS5

No-Susy
Sector

H

V(H) =
∫ d4p

(2π)4
ln

[
1+m2

B(H)GB
p

1+m2
F
(H)GF

p

] Gp= AdS propagators

FINITE (From non-local effects)

e.g. from gauge bosons

m2
H ≈

(
0.1
L

)2

One-loop below the composite scale 1/L

gauge or 
gravity

Spectrum at high-energies (Q~1/R) model dependent  

Lightest superpartner: 
      Neutralino (mixture of gaugino and Higgsino)

An example:     Scalar masses = 0  (at tree-level)
                      Gaugino masses = M1/2 ≠0

R



Higgs sector

This implies that |M2| ! |M1| ! |M3|, so the lightest neutralino is actually mostly wino, with a
lightest chargino that is only of order 200 MeV heavier, depending on the values of µ and tan β. The
decay C̃±

1 → Ñ1π± produces a very soft pion, implying unique and difficult signatures in colliders
[173]-[177].

Another large general class of models breaks supersymmetry using the geometric or topological
properties of the extra dimensions. In the Scherk-Schwarz mechanism [178], the symmetry is broken
by assuming different boundary conditions for the fermion and boson fields on the compactified space.
In supersymmetric models where the size of the extra dimension is parameterized by a modulus (a
massless or nearly massless excitation) called a radion, the F -term component of the radion chiral
supermultiplet can obtain a VEV, which becomes a source for supersymmetry breaking in the MSSM.
These two ideas turn out to be often related. Some of the variety of models proposed along these lines
can be found in [179]. These mechanisms can also be combined with gaugino-mediation and AMSB. It
seems likely that the possibilities are not yet fully explored.

7 The mass spectrum of the MSSM

7.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d − H0

uH0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 +

1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2. (7.1)

The terms proportional to |µ|2 come from F -terms [see eq. (5.5)]. The terms proportional to g2 and
g′2 are the D-term contributions, obtained from the general formula eq. (3.75) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (5.12). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one can check that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also
have H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d |2 − (bH0
uH0

d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (7.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
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quartic coupling  
related to gauge-couplings

Only 3 parameters:

2 x 4 = 8 scalars = 3 Goldstones (eaten by W, Z)
                          +3 neutral Higgs = h, H,  A
                          + Charged Higgs = H⁺, H⁻

Spectrum: 
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Was a great prediction for Higgs hunters at LEP!



... but quantum effects (mostly loops of top/stop) 
t t̃

t̃
t̃

Figure 7.3: Integrating out the top quark and top squarks yields large positive contributions to the
quartic Higgs coupling in the low-energy effective theory, especially from these one-loop diagrams.

An alternative way to understand the size of the radiative correction to the h0 mass is to consider
an effective theory in which the heavy top squarks and top quark have been integrated out. The quartic
Higgs couplings in the low-energy effective theory get large positive contributions from the the one-loop
diagrams of fig. 7.3. This increases the steepness of the Higgs potential, and can be used to obtain the
same result for the enhanced h0 mass.

An interesting case, often referred to as the “decoupling limit”, occurs when mA0 ! mZ . Then
mh0 can saturate the upper bounds just mentioned, with m2

h0 ≈ m2
Z cos2(2β)+ loop corrections. The

particles A0, H0, and H± will be much heavier and nearly degenerate, forming an isospin doublet that
decouples from sufficiently low-energy experiments. The angle α is very nearly β−π/2, and h0 has the
same couplings to quarks and leptons and electroweak gauge bosons as would the physical Higgs boson
of the ordinary Standard Model without supersymmetry. Indeed, model-building experiences have
shown that it is not uncommon for h0 to behave in a way nearly indistinguishable from a Standard
Model-like Higgs boson, even if mA0 is not too huge. However, it should be kept in mind that the
couplings of h0 might turn out to deviate significantly from those of a Standard Model Higgs boson.

Top-squark mixing (to be discussed in section 7.4) can result in a further large positive contribution
to m2

h0 . At one-loop order, and working in the decoupling limit for simplicity, eq. (7.24) generalizes to:

m2
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/m2

t

]
. (7.25)

Here ct̃ and st̃ are the cosine and sine of a top squark mixing angle θt̃, defined more specifically below
following eq. (7.71). For fixed top-squark masses, the maximum possible h0 mass occurs for rather
large top squark mixing, c2

t̃
s2
t̃

= m2
t /[m

2
t̃2

+ m2
t̃1
− 2(m2

t̃2
− m2

t̃1
)/ln(m2

t̃2
/m2

t̃1
)] or 1/4, whichever is less.

It follows that the quantity in square brackets in eq. (7.25) is always less than m2
t [ln(m2

t̃2
/m2

t ) + 3].
The LEP constraints on the MSSM Higgs sector make the case of large top-squark mixing noteworthy.

Including these and other important corrections [185]-[194], one can obtain only a weaker, but still
very interesting, bound

mh0 <∼ 135 GeV (7.26)

in the MSSM. This assumes that all of the sparticles that can contribute to m2
h0 in loops have masses

that do not exceed 1 TeV. By adding extra supermultiplets to the MSSM, this bound can be made even
weaker. However, assuming that none of the MSSM sparticles have masses exceeding 1 TeV and that
all of the couplings in the theory remain perturbative up to the unification scale, one still has [195]

mh0 <∼ 150 GeV. (7.27)

This bound is also weakened if, for example, the top squarks are heavier than 1 TeV, but the upper
bound rises only logarithmically with the soft masses, as can be seen from eq. (7.24). Thus it is a fairly
robust prediction of supersymmetry at the electroweak scale that at least one of the Higgs scalar bosons
must be light. (However, if one is willing to extend the MSSM in a completely general way above the
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The radiatively corrected masses of the neutral CP–even and the charged Higgs bosons

are displayed in Fig. 1.7 as a function of MA for the two values tanβ = 3 and 30. The full set

of radiative corrections has been included and the “no–mixing” scenario with Xt = 0 (left)

and “maximal mixing” scenario with Xt =
√

6MS (right) have been assumed. The SUSY

scale has been set to MS = 2 TeV and the other SUSY parameters except for At to 1 TeV;

the SM input parameters are fixed to mt = 178 GeV, mb = 4.88 GeV and αs(MZ) = 0.1172.

The program HDECAY [129] which incorporates the routine FeynHiggsFast1.2 [130] for the

calculation of the radiative corrections in the MSSM Higgs sector, has been used.

Figure 1.7: The masses of the MSSM Higgs bosons as a function of MA for two values
tan β = 3 and 30, in the no mixing (left) and maximal mixing (right) scenarios with MS = 2
TeV and all the other SUSY parameters set to 1 TeV. The full set of radiative corrections
is included with mt = 178 GeV, mb = 4.88 GeV and αs(MZ) = 0.1172.

As can be seen, a maximal value for the lighter Higgs mass, Mh ∼ 135 GeV, is obtained

for large MA values in the maximal mixing scenario with tan β = 30 [the mass value is almost

constant if tanβ is increased]. For no stop mixing, or when tan β is small, tanβ <∼ 3, the

upper bound on the h boson mass is smaller by more than 10 GeV in each case and the

combined choice tan β = 3 and Xt = 0, leads to a maximal value Mmax
h ∼ 110 GeV. Also for

large MA values, the A, H and H± bosons [the mass of the latter being almost independent

of the stop mixing and on the value of tanβ] become degenerate in mass. In the opposite

case, i.e. for a light pseudoscalar Higgs boson, MA <∼ Mmax
h , it is Mh which is very close to

MA, and the mass difference is particularly small for large tan β values.
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modify the bound:

Upper bound 
~130 GeV
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LEP searches:

particles do not couple to gauge boson pairs; the CP–odd and charged Higgs boson couplings

to respectively, hZ and hW , are also proportional to this factor and vanish in the decoupling

limit. In addition, in contrast to the SM where the self–couplings are proportional to M2
HSM

,

the trilinear and quartic Higgs couplings in the MSSM are all proportional to the gauge

couplings and never become large; in fact, they all tend to either zero or ±1 when expressed

in units of M2
Z/v, as seen in §1.3.3. Nevertheless, since these particles are the remnants of

the electroweak symmetry breaking which occurs at the Fermi scale, they are expected to

have masses not too far from this scale, i.e. MH,A,H± <∼ O(1 TeV).

1.4.2 Constraints from direct Higgs searches

The neutral Higgs bosons

The search for the Higgs bosons was the main motivation for extending the LEP2 energy up

to
√

s # 209 GeV [159]. At these energies, there are two main processes for the production

of the neutral Higgs bosons of the MSSM: the Higgs–strahlung process [158,160–162] already

discussed in the SM Higgs case [see §I.4.2], and the associated production of CP–even and

CP–odd Higgs bosons [163,164]; Fig. 1.14. In the case of the lighter h particle, denoting the

SM Higgs cross section by σSM, the production cross sections are given by

σ(e+e− → hZ) = g2
hZZ σSM(e+e− → hZ)

σ(e+e− → hA) = g2
hAZ σSM(e+e− → hZ) ×

λ3
Ah

λZh(λ2
Zh + 12M2

Z/s)
(1.160)

where λij = (1 − M2
i /s − M2

i /s)2 − 4M2
i M2

j /s2 is the two–body phase space function; the

additional factor for the last process accounts for the fact that two spin–zero particles are

produced and the cross section should be proportional to λ3
ij as discussed in §I.4.2.2.

•

e−

e+

Z∗

h

Z

•

e−

e+

Z∗

h

A

Figure 1.14: Diagrams for MSSM neutral Higgs production at LEP2 energies.

Since g2
AhZ = cos2(β − α) while g2

hZZ = sin2(β − α), the processes e+e− → hZ and

e+e− → hA are complementary11. In the decoupling limit, MA ' MZ , σ(e+e− → hA)

vanishes since g2
hAZ ∼ 0 while σ(e+e− → hZ) approaches the SM limit since g2

hZZ ∼ 1. In
11As will be discussed in the next section, this remark can be extended to the heavier CP–even Higgs

boson and the complementarity is doubled in this case: there is one between the processes e+e− → HZ and
e+e− → HA as for the h boson, but there is also a complementarity between the production of the h and
H bosons. The radiative corrections to these processes will also be discussed in §4.1.
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with decays to taus and bottoms
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Figure 1.17: 95% CL contours in the tanβ–Mh (left) and tanβ–MA (right) planes excluded
by the negative searches of MSSM neutral Higgs bosons at LEP2, from Ref. [167]. They
are displayed in the maximal mixing (top figures) and no–mixing (lower figures) scenarios
with MS = 1 TeV and mt = 179.3 GeV. The dashed lines indicate the boundaries that are
excluded on the basis of Monte–Carlo simulations in the absence of a signal.

[171, 172] but the obtained bounds are not yet competitive with those discussed above.

The charged Higgs boson

In e+e− collisions, the production of a pair of charged Higgs bosons [163, 173] proceeds

through virtual photon and Z boson exchange; Fig. 1.18a. The cross section depends only
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m2
h = m2

Z +
3m4

t

2π2v2
ln(mstop/mt) + · · ·

After LEP, a heavy stop is essential to keep the MSSM alive

Needed to be large to be above 
the experimental bound

Higgs searches rules out a big chunk 
of the parameter space of the MSSM!

Higgs bound:

<



Giudice, Rattazzi
Only the thin 

“withe spike” is left!

In 
minimal 
Sugra:

M2
1/2/µ2

M2
0 /µ2



MSSM Higgs hunting at the LHC

Bad news:  h too light to decay to WW/ZZ

A, H⁺  have very small couplings to WW/ZZ

Good news:  Regions where the decays of H,  A, H⁺ to 
leptons are enhanced (Large Tanβ region)

H  small regions with sizable 
                         couplings to WW/ZZ  

Due to: mτ = Yτ �Hd�

can be larger than in the SM, if            is smaller than v �Hd�



F. Ronga (ETH Zurich) – Planck 2010 – June 3, 2010

Expected sensitivity to the MSSM Higgs boson
in the !! channel

Neutral MSSM Higgs
!Associated production with 

b-jets

! combining three "" channels

"with at least one leptonic decay: 
!had!#, !had!e, !e!#

! cross-sections scaled from 
14 TeV to 7 TeV

• Large range covered, down 
to tan$ ~ 15 at low mA

21

5# discovery

95% exclusion

CMS NOTE-2010/008

Near future:

More interestingly: MSSM could be ruled out 
if a Higgs ➞ WW/ZZ with mass ~160 GeV 

is discovered in the first LHC run 



3. MSSM Higgses: detection at the LHC

 ATLAS
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In the long run....



Superpartners at Hadron Colliders



Superpartners at Hadron Colliders

Neutral gaugino + Higgsino mix:
Mass-eigenstate =       neutralino   χ0

   Charged gaugino + Higgsino mix:
Mass-eigenstate =      chargino   χ+



Main consideration:
Due to R-parity superpartners are produced in pairs, and 
decay, in cascade, down to the lightest one (neutral) that, 
being stable, goes away from the detectorPhysics at the ILC SUSY, LHC+ILC

Typical SUSY Event at LHC

Jörgen Samson (DESY) Physics at the ILC 22. January 2007 28 / 38

A classic:



Physics at the ILC SUSY, LHC+ILC

Typical SUSY Event at LHC

Jörgen Samson (DESY) Physics at the ILC 22. January 2007 28 / 38

Strategy:  Detect leptons or jets + Missing ET

Final states with same-charge dilepton 
 due to the Majorana nature of the gluino



Tevatron

From P. Wittich at 
“Physics at the LHC 2010” conference



• Large production cross section, 
bkgnds from multi-jet, Z→νν, top

• Optimize searches as a function of 
(Missing ET, njet)

• No excess seen so far
• Limits for 2 (2.1)/fb of data for CDF 

(D0)
• interpret results in mSUGRA-like 

SUSY scenario

susy in jets + met:generic squark/gluino production

20

!"#



Peter Wittich 

Trileptons: Chargino-Neutralino Search, 3.2/fb

16

• Very clean signature: 

• Missing ET  due to undetected ν, χ0
1 

• 3 isolated leptons, lower momentum

• Rejection using kinematic selections 
on:  ml+l-, njets, Missing ET, Δφ 
between leptons... 

• 3 identified leptons (e,μ)

• 2 identified leptons + track (l)
• “Tight” and “loose” e,μ categories

~

~

Good agreement between data 
and SM prediction → set limit

Channel     SM expected      Data

Trilepton    1.5 ± 0.2     1

Lepton+trk  9.4± 1.2       6
!"#



Peter Wittich 

Chargino-neutralino results

17

PRL 101, 251801 (2008)

      Excludes mχ±
1
 < 164 (154 Exp.) GeV/c2

CDF @ 2 fb-1

m0 = 60 GeV, tan β=3, A0=0, μ>0

~

~

excluded  region in 
mSUGRA m0-m! space 

Limits depend on relative χ0
2-l masses

!  mχ2 > ml  increases BR to e/μ
!  mχ2 ! ml  reduces acceptance 

       

~

~

~

!"#D0 limit in 2.3/fb: Phys. Lett. B 680, 34 (2009)

•interpret null result in mSugra SUSY scenario as 
a convenient/conventional benchmark



Peter Wittich 

2 b jets + ET
Miss - ~q and LQ

• Final state familiar from Higgs searches
• missing ET and b quarks

• Also good signal for leptoquarks and SUSY
• event selection:

• b tagging (D0: neural-net algo)
• two b-tagged jets, ETmiss, Sign., ΣET

• optimize pT, ETmiss, HT, Xjj for SUSY/LQ3 
signals

21

ZH → νν̄bb̄

LQ3 → ντ b
pp̄ → b̃1

˜̄b1 → bχ̃0
1b̄χ̃

0
1

pre-tagtagged

!"#

6

to the final uncertainty. The total systematic uncertainty
on the SM predictions varies between 19% and 18% as
∆M increases. In the case of the MSSM signal, various
sources of uncertainty on the predicted cross sections at
NLO, as determined using prospino2, are considered:
the uncertainty due to PDFs is computed using the Hes-
sian method [27] and translates into a 12% uncertainty
on the absolute predictions; variations of the renormal-
ization and factorization scale by a factor of two change
the theoretical cross sections by about 26%. Uncertain-
ties on the amount of initial- and final-state gluon radi-
ation in the MSSM Monte Carlo generated samples in-
troduce a 10% uncertainty on the signal yields. The 3%
uncertainty on the absolute jet energy scale translates
into a 9% to 14% uncertainty on the MSSM predictions.
Other sources of uncertainty include: a 4% uncertainty
due to the determination of the b-tagging efficiency, and
a 2% to 1% uncertainty due to the uncertainty on the
trigger efficiency. The total systematic uncertainty on
the MSSM signal yields varies between 30% and 32% as
∆M increases. Finally, an additional 6% uncertainty on
the quoted total integrated luminosity is also taken into
account in both SM background and SUSY signal pre-
dictions.
Figure 1 shows the measured E/T and HT + E/T dis-

tributions compared to the SM predictions after all final
selection criteria are applied. For illustrative purposes,
the figure indicates the impact of two given MSSM sce-
narios. The data are in agreement with the SM predic-
tions within uncertainties for each of the two analyses at
low and high ∆M . In Table 2, the observed number of
events and the SM predictions are presented in each case.
A global χ2 test applied to all data points in Fig. 1, and
including correlations between systematic uncertainties,
gives a 30% probability for data to be consistent with the
SM.

(2.65 fb−1) low ∆M high ∆M
mistags 51.4± 18.2 18.5 ± 5.5
QCD jets 7.6± 1.9 1.6± 0.2

top 21.2 ± 3.4 7.8± 1.3
Z → νν̄+jets 27.7 ± 8.8 10.9 ± 3.5

Z/γ∗ → l+l−+jets 0.5± 0.2 0.11± 0.04
W → lν+jets 22.3 ± 7.3 7.3± 2.4
WW,WZ,ZZ 3.1± 0.5 1.4± 0.2
SM prediction 133.8 ± 26.4 47.6 ± 8.8
Events in data 139 38

TABLE II: Number of events in data for the two analyses
compared to SM predictions, including statistical and sys-
tematic uncertainties summed in quadrature.

The results are translated into 95% confidence level
(C.L.) upper limits on the cross section for sbottom pair
production at given sbottom and neutralino masses, us-
ing a Bayesian approach [28] and including statistical and
systematic uncertainties. For the latter, correlations be-
tween systematic uncertainties on signal efficiencies and
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FIG. 1: Measured E/T and HT +E/T distributions (black dots)
for low-∆M (top) and high-∆M analyses (bottom), compared
to the SM predictions (solid lines) and the SM+MSSM pre-
dictions (dashed lines). The shaded bands show the total
systematic uncertainty on the SM predictions.

background predictions are taken into account. For each
MSSM point considered, observed and expected limits
are computed separately for both low- and high-∆M
analyses, and the one with the best expected limit is
adopted as the nominal result. Cross sections above 0.1
pb are excluded at 95% C.L. for the range of sbottom
masses considered. Similarly, the observed numbers of
events in data are translated into 95% C.L. upper limits
for sbottom and neutralino masses, for which the uncer-
tainties on the theoretical cross sections are also included
in the limit calculation, and where both analyses are com-
bined in the same way as for the cross section limits. Fig-
ure 2 shows the expected and observed exclusion regions
in the sbottom-neutralino mass plane. For the MSSM
scenario considered, sbottom masses up to 230 GeV/c2

are excluded at 95% C.L. for neutralino masses below
70 GeV/c2. This analysis extends the previous CDF lim-
its [4] on the sbottom mass by more than 40 GeV/c2.

In summary, we report results on a search for sbottom
pair production in pp collisions at

√
s = 1.96 TeV, based

on 2.65 fb−1 of CDF Run II data. The events are se-
lected with large E/T and two energetic jets in the final
state, and at least one jet is required to originate from a
b quark. The measurements are in agreement with SM
predictions for backgrounds. The results are translated
into 95% C.L. upper limits on production cross sections
and sbottom and neutralino masses in a given MSSM sce-
nario for which the exclusive decay b̃1 → bχ̃0

1 is assumed,
and significantly extend previous CDF results.

We thank the Fermilab staff and the technical staffs
of the participating institutions for their vital contribu-
tions. This work was supported by the U.S. Department
of Energy and National Science Foundation; the Italian
Istituto Nazionale di Fisica Nucleare; the Ministry of
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∆M increases. In the case of the MSSM signal, various
sources of uncertainty on the predicted cross sections at
NLO, as determined using prospino2, are considered:
the uncertainty due to PDFs is computed using the Hes-
sian method [27] and translates into a 12% uncertainty
on the absolute predictions; variations of the renormal-
ization and factorization scale by a factor of two change
the theoretical cross sections by about 26%. Uncertain-
ties on the amount of initial- and final-state gluon radi-
ation in the MSSM Monte Carlo generated samples in-
troduce a 10% uncertainty on the signal yields. The 3%
uncertainty on the absolute jet energy scale translates
into a 9% to 14% uncertainty on the MSSM predictions.
Other sources of uncertainty include: a 4% uncertainty
due to the determination of the b-tagging efficiency, and
a 2% to 1% uncertainty due to the uncertainty on the
trigger efficiency. The total systematic uncertainty on
the MSSM signal yields varies between 30% and 32% as
∆M increases. Finally, an additional 6% uncertainty on
the quoted total integrated luminosity is also taken into
account in both SM background and SUSY signal pre-
dictions.
Figure 1 shows the measured E/T and HT + E/T dis-

tributions compared to the SM predictions after all final
selection criteria are applied. For illustrative purposes,
the figure indicates the impact of two given MSSM sce-
narios. The data are in agreement with the SM predic-
tions within uncertainties for each of the two analyses at
low and high ∆M . In Table 2, the observed number of
events and the SM predictions are presented in each case.
A global χ2 test applied to all data points in Fig. 1, and
including correlations between systematic uncertainties,
gives a 30% probability for data to be consistent with the
SM.

(2.65 fb−1) low ∆M high ∆M
mistags 51.4± 18.2 18.5 ± 5.5
QCD jets 7.6± 1.9 1.6± 0.2

top 21.2 ± 3.4 7.8± 1.3
Z → νν̄+jets 27.7 ± 8.8 10.9 ± 3.5

Z/γ∗ → l+l−+jets 0.5± 0.2 0.11± 0.04
W → lν+jets 22.3 ± 7.3 7.3± 2.4
WW,WZ,ZZ 3.1± 0.5 1.4± 0.2
SM prediction 133.8 ± 26.4 47.6 ± 8.8
Events in data 139 38

TABLE II: Number of events in data for the two analyses
compared to SM predictions, including statistical and sys-
tematic uncertainties summed in quadrature.

The results are translated into 95% confidence level
(C.L.) upper limits on the cross section for sbottom pair
production at given sbottom and neutralino masses, us-
ing a Bayesian approach [28] and including statistical and
systematic uncertainties. For the latter, correlations be-
tween systematic uncertainties on signal efficiencies and
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FIG. 1: Measured E/T and HT +E/T distributions (black dots)
for low-∆M (top) and high-∆M analyses (bottom), compared
to the SM predictions (solid lines) and the SM+MSSM pre-
dictions (dashed lines). The shaded bands show the total
systematic uncertainty on the SM predictions.

background predictions are taken into account. For each
MSSM point considered, observed and expected limits
are computed separately for both low- and high-∆M
analyses, and the one with the best expected limit is
adopted as the nominal result. Cross sections above 0.1
pb are excluded at 95% C.L. for the range of sbottom
masses considered. Similarly, the observed numbers of
events in data are translated into 95% C.L. upper limits
for sbottom and neutralino masses, for which the uncer-
tainties on the theoretical cross sections are also included
in the limit calculation, and where both analyses are com-
bined in the same way as for the cross section limits. Fig-
ure 2 shows the expected and observed exclusion regions
in the sbottom-neutralino mass plane. For the MSSM
scenario considered, sbottom masses up to 230 GeV/c2

are excluded at 95% C.L. for neutralino masses below
70 GeV/c2. This analysis extends the previous CDF lim-
its [4] on the sbottom mass by more than 40 GeV/c2.

In summary, we report results on a search for sbottom
pair production in pp collisions at

√
s = 1.96 TeV, based

on 2.65 fb−1 of CDF Run II data. The events are se-
lected with large E/T and two energetic jets in the final
state, and at least one jet is required to originate from a
b quark. The measurements are in agreement with SM
predictions for backgrounds. The results are translated
into 95% C.L. upper limits on production cross sections
and sbottom and neutralino masses in a given MSSM sce-
nario for which the exclusive decay b̃1 → bχ̃0

1 is assumed,
and significantly extend previous CDF results.
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Peter Wittich 

Supersymmetric top in the e+μ+bb+MET, 3.1/fb
• 3rd generation again - special role in SUSY
• Look for decay mode in e μ final state with ET

Miss >18 GeV
• Low SM backgrounds (Z→ττ,ttbar)
• Reject with δΦ(lepton, ET

Miss) cuts
• no explicit b tag required

• Consider small and large δm(stop, sneutrino)
• drives kinematics of accepted events

• Bin events in two kinematic variables
• HT: scaler sum of jet pT

• ST: scalar sum of lepton pT, ET
Miss

• Null result: set limits in sneutrino/stop mass plane
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Other MSSM goodies:

● The lightest supersymmetric particle (LSP) 
   can be Dark matter

● Gauge coupling unification

● Local supersymmetry must incorporate gravity:

● Fits well EWPT from LEP/Tevatron

The systematic cancellation of the dangerous contributions to ∆m2
H can only be brought about by

the type of conspiracy that is better known to physicists as a symmetry. Comparing eqs. (1.2) and
(1.3) strongly suggests that the new symmetry ought to relate fermions and bosons, because of the
relative minus sign between fermion loop and boson loop contributions to ∆m2

H . (Note that λS must
be positive if the scalar potential is to be bounded from below.) If each of the quarks and leptons of the
Standard Model is accompanied by two complex scalars with λS = |λf |2, then the Λ2

UV contributions of
Figures 1.1a and 1.1b will neatly cancel [3]. Clearly, more restrictions on the theory will be necessary to
ensure that this success persists to higher orders, so that, for example, the contributions in Figure 1.2
and eq. (1.4) from a very heavy fermion are canceled by the two-loop effects of some very heavy
bosons. Fortunately, the cancellation of all such contributions to scalar masses is not only possible,
but is actually unavoidable, once we merely assume that there exists a symmetry relating fermions and
bosons, called a supersymmetry.

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa. The
operator Q that generates such transformations must be an anticommuting spinor, with

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (1.5)

Spinors are intrinsically complex objects, so Q† (the hermitian conjugate of Q) is also a symmetry
generator. Because Q and Q† are fermionic operators, they carry spin angular momentum 1/2, so it is
clear that supersymmetry must be a spacetime symmetry. The possible forms for such symmetries in
an interacting quantum field theory are highly restricted by the Haag-Lopuszanski-Sohnius extension
of the Coleman-Mandula theorem [4]. For realistic theories that, like the Standard Model, have chiral
fermions (i.e., fermions whose left- and right-handed pieces transform differently under the gauge group)
and thus the possibility of parity-violating interactions, this theorem implies that the generators Q and
Q† must satisfy an algebra of anticommutation and commutation relations with the schematic form

{Q,Q†} = Pµ, (1.6)

{Q,Q} = {Q†, Q†} = 0, (1.7)

[Pµ, Q] = [Pµ, Q†] = 0, (1.8)

where Pµ is the four-momentum generator of spacetime translations. Here we have ruthlessly sup-
pressed the spinor indices on Q and Q†; after developing some notation we will, in section 3.1, derive
the precise version of eqs. (1.6)-(1.8) with indices restored. In the meantime, we simply note that the
appearance of Pµ on the right-hand side of eq. (1.6) is unsurprising, since it transforms under Lorentz
boosts and rotations as a spin-1 object while Q and Q† on the left-hand side each transform as spin-1/2
objects.

The single-particle states of a supersymmetric theory fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both fermion and boson
states, which are commonly known as superpartners of each other. By definition, if |Ω〉 and |Ω′〉 are
members of the same supermultiplet, then |Ω′〉 is proportional to some combination of Q and Q†

operators acting on |Ω〉, up to a spacetime translation or rotation. The squared-mass operator −P 2

commutes with the operators Q, Q†, and with all spacetime rotation and translation operators, so
it follows immediately that particles inhabiting the same irreducible supermultiplet must have equal
eigenvalues of −P 2, and therefore equal masses.

The supersymmetry generators Q,Q† also commute with the generators of gauge transformations.
Therefore particles in the same supermultiplet must also be in the same representation of the gauge
group, and so must have the same electric charges, weak isospin, and color degrees of freedom.

Each supermultiplet contains an equal number of fermion and boson degrees of freedom. To prove
this, consider the operator (−1)2s where s is the spin angular momentum. By the spin-statistics
theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting on a
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