The hierarchy problem

(On the origin of the Higgs potential)

Electroweak symmetry breaking (EWSB) in the SM is triggered by the Higgs VEV:

$$V(h) = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4$$

$$\mu^2 = \lambda v^2 = \frac{\lambda}{g^2} 4M_W^2 \sim 10^4 \text{ GeV}^2 << M_P^2 \sim 10^{38} \text{ GeV}^2$$

Why so different?

Even worse, at the quantum level, scalar masses are extremely sensitive to heavy states

Not the same situation for fermions or gauge bosons gauge symmetries can protect them

No symmetry in the SM protects the Higgs mass

In general:

vs

$$\mu^2 |H|^2$$

Not a singlet if \text{\Pr} transform:

$$\Psi_R \to e^{i\theta} \Psi_R$$

(chiral symmetry)

Always a singlet under phase transformations

Expected: $\mu^2 \sim \text{heavier scale}^2 \sim \text{M}_{\text{GUT}}^2, \text{M}_{\text{P}}^2, \text{M}_{\text{string}}^2$

This is the hierarchy problem

Let me emphasize that is not a problem of consistency but of naturalness

Example:

Fine-tune system

Analogy with Superconductivity

EWSB \Leftrightarrow Breaking of U(I)_{EM} Higgs Model \Leftrightarrow GL Model $\langle h \rangle = \langle e^-e^- \rangle$

Give the GL Model a good description of superconductors?

Analogy with Superconductivity

EWSB \Leftrightarrow Breaking of U(I)_{EM}

Higgs Model \Leftrightarrow GL Model $\langle h \rangle = \langle e^-e^- \rangle$

$$\langle h \rangle = \langle e^- e^- \rangle$$

Give the GL Model a good description of superconductors?

NO, it only works close to the critical line

only there $\langle h \rangle$ is small and it makes sense to Taylor-expand the potential:

$$V(h) = m^2|h|^2 + \lambda|h|^4 + \cdots$$

Possibilities that theorists envisage to tackle the Hierarchy Problem:

- I) **Supersymmetry**: Protecting the Higgs mass by a symmetry
- 2) Composite Higgs: The Higgs is not elementary:

As in superconductivity: h ~ ee or QCD: pions ~ qq

3) Large extra dimensions:

Gravity strong at the EW-scale: $\Lambda \sim M_{string} \sim TeV$

→ In all cases New Physics at ~TeV

Strong motivation for the LHC!

Supersymmetry

Following notation and formulae of "A Supersymmetry Primer", Stephen P. Martin (hep-ph/9709356)

We want a symmetry to protect the Higgs mass:

Idea:

Scalar

Fermion

since fermion masses protected by chiral symmetry

It exists, it is a **Super**symmetry:

Simplest case:

$$\mathcal{L} = |\partial_{\mu}\Phi|^2 + i\frac{1}{2}\bar{\Psi}\partial\Psi$$

Ψ = Majorana fermion

 Φ = Complex scalar

Invariant under:

$$\Phi \to \Phi + \delta \Phi$$

$$\delta\Phi \rightarrow \bar{\xi}(1-\gamma_5)\Psi$$

$$\Psi \rightarrow \Psi + \delta \Psi$$

$$\delta\Psi \rightarrow i(1-\gamma_5)\gamma^{\mu}\xi\partial_{\mu}\Phi$$

Parameter of the trans. being a Majorana fermion

The scalar must be massless!!

Supersymmetry Algebra

(Maximal extension of Poincare in a QFT)

Minimal SUSY (N=1): One extra generator Q

$$Q|Boson\rangle = |Fermion\rangle, \qquad \qquad Q|Fermion\rangle = |Boson\rangle$$

$$Q|\text{Fermion}\rangle = |\text{Boson}\rangle$$

Schematic form:

$$[Q, M_{\mu\nu}] = Q$$

$$\{Q, Q^{\dagger}\} = P^{\mu},$$

$$\{Q, Q\} = \{Q^{\dagger}, Q^{\dagger}\} = 0,$$

$$[P^{\mu}, Q] = [P^{\mu}, Q^{\dagger}] = 0,$$

Q commutes with P² and any generator of the gauge symmetries:

The Fermion and Boson have equal masses and charges

Minimal Supersymmetric SM (MSSM)

Imposing supersymmetry to the **SM** → **MSSM**

The spectrum is doubled:

SM fermion → New scalar (s-"...")

SM boson → New majorana fermion

(" ..."-ino)

... but not yet realistic:

The model has a quantum anomaly (due to the Higgsino) and the down-quarks and leptons are massless

Extra Higgs needed

→ Two Higgs doublets:

```
H_u: (1,2,1) \longrightarrow \text{give mass to the up quarks}
```

$$H_d: (1,2,-1) \longrightarrow \text{give mass to the down quarks}$$
 and leptons

+ two Higgsino doublets:

$$\widetilde{H}_u: (1,2,1)$$

$$\widetilde{H}_d: (1,2,-1)$$

MSSM Spectrum

Squarks

Sleptons

 $egin{array}{c|cccc} (\widetilde{u}_L & \widetilde{d}_L) & (u_L & d_L) \ & \widetilde{u}_R^* & u_R^\dagger & d_R^\dagger \ & \widetilde{d}_R^* & d_R^\dagger & \end{array} \ egin{array}{c|cccc} (\widetilde{
u}_R & d_R^\dagger & d_R^\dagger \ & d_R^\dagger & \end{array} \ egin{array}{c|cccc} (\widetilde{
u}_R & e_L) & (
u & e_L) \ & e_R^\dagger & e_R^\dagger \ & \end{array} \ egin{array}{c|cccc} (H_u^+ & H_u^0) & (\widetilde{H}_u^+ & \widetilde{H}_u^0) \ & (H_d^0 & H_d^-) & (\widetilde{H}_d^0 & \widetilde{H}_d^-) \ \end{array} \ egin{array}{c|ccccccccc} (\widetilde{H}_d^0 & \widetilde{H}_d^-) & (\widetilde{H}_d^0 & \widetilde{H}_d^-) \ \end{array} \ egin{array}{c|cccccccccc} (\widetilde{H}_d^0 & \widetilde{H}_d^-) & (\widetilde{H}_d^0 & \widetilde{H}_d^-) \ \end{array}$

Higgsinos

Gauginos

particles: R-parity = I
superpartners: R-parity = - I

- 1) Superpart. interact in pairs
- 2) Lightest superpart. stable

Type of interactions

Getting them from "supersymmetrization":

Up to scalar trilinear and quartics:

How supersymmetry works?

Fermion loop

$$\mu^2 = +A$$

Boson loop

$$\mu^2 = -A$$

Its not the first time that symmetries force doubling the known spectrum:

Relativistic quantum field theories:

Particle → Antiparticles

Made the electron-mass corrections not linearly divergent:

$$\Delta m_e \propto m_e$$

But if supersymmetry is exact:

MF = MB
$$\rightarrow$$
 e.g. $M_e = M_{\tilde{e}}$

It must be broken to give masses to the superpartners

Supersymmetry breaking must afford "soft terms":

(terms that do not spoil the good UV properties of the Susy)

$$-\frac{1}{2}\left(\underline{M_{3}}\widetilde{g}\widetilde{g} + \underline{M_{2}}\widetilde{W}\widetilde{W} + \underline{M_{1}}\widetilde{B}\widetilde{B} + \text{c.c.}\right)$$

$$-\left(\widetilde{\overline{u}}\mathbf{a_{u}}\widetilde{Q}H_{u} - \widetilde{\overline{d}}\mathbf{a_{d}}\widetilde{Q}H_{d} - \widetilde{\overline{e}}\mathbf{a_{e}}\widetilde{L}H_{d} + \text{c.c.}\right)$$

$$-\widetilde{Q}^{\dagger}\mathbf{m_{Q}^{2}}\widetilde{Q} - \widetilde{L}^{\dagger}\mathbf{m_{L}^{2}}\widetilde{L} - \widetilde{\overline{u}}\mathbf{m_{u}^{2}}\widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}}\mathbf{m_{d}^{2}}\widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}}\mathbf{m_{e}^{2}}\widetilde{\overline{e}}^{\dagger}$$

$$-\mathbf{m_{H_{u}}^{2}}H_{u}^{*}H_{u} - \mathbf{m_{H_{d}}^{2}}H_{d}^{*}H_{d} - \left(bH_{u}H_{d} + \text{c.c.}\right).$$

$$+\mu \widetilde{H}_{u}\widetilde{H}_{d}$$

$$+\mu \widetilde{H}_{u}\widetilde{H}_{d}$$

$$= \mathbf{1}$$

for 3 families, more than 100 terms are possible!!

How supersymmetry works?

(including soft-masses)

Fermion loop

$$\mu^2 = + A$$

Boson loop

$$\mu^{2} = -A + m_{stop}^{2} B$$

$$\mu^{2}_{total} \sim m_{stop}^{2}$$
Superpartner

Superpartners expected around v ~ 100 GeV

Constraints on superpartner masses from flavor physics:

Breaking of lepton symmetry:

Exp:
$$BR(\mu \to e\gamma) < 10^{-11}$$
 \implies $m_{\tilde{e}} \simeq m_{\tilde{\mu}}$

up to 1% - 0.1%

Large contributions to K-K mixing:

$$\frac{\overline{s}}{\widetilde{g}} \underbrace{\tilde{s}_{R}^{*} \times \tilde{d}_{R}^{*}}_{\widetilde{g}} \underbrace{\tilde{d}_{R}^{*} \times \tilde{d}_{R}^{*}}_{\widetilde{g}} \underbrace{\tilde{d}_{R}^{*} \times \tilde{d}_{R}^{*}}_{\widetilde{g}} \underbrace{\tilde{d}_{R}^{*} \times \tilde{s}_{R}^{*}}_{S} \underbrace{\tilde{s}_{R}^{*}}_{S} \underbrace{\tilde{s}_{R}^{*}}_{S} \underbrace{\tilde{d}_{R}^{*} \times \tilde{s}_{R}^{*}}_{S} \underbrace{\tilde{d}_{R}^{*}}_{S} \underbrace{\tilde{d}_{R}^{*} \times \tilde{s}_{R}^{*}}_{S} \underbrace{\tilde{d}_{R}^{*}}_{S} \underbrace{\tilde{d}_{R}^{*}}_{S}$$

 $m_{\tilde{s}} \simeq m_{\tilde{d}}$ up to 0.1% - 0.001%

Soft terms must be generated in a clever way

Most interesting possibilities:

- I) Gauge mediation
- 2) Gravity/Moduli/Extra-dim mediation

The famous scenario "minimal sugra" not a model, just an Ansatz:

At Q=M_{GUT}

All gaugino masses equal = $M_{1/2}$ All scalar masses equal = M_0 All trilinear equal = A_0

I don't know, but experimentalists like it a lot!

I) Gauge mediation

New sector Susy breaking sector gauge bosons **MSSM**

Gauge interactions are "flavor blind":

Universal masses for squarks/sleptons with equal charges

Very predictive (in the minimal case). Just calculate loops:

gaugino masses

scalar masses

Depends on 3 parameters:

- I) μ-term: Higgsino mass
- 2) Susy-breaking scale: F
- 3) Scale where the soft-terms are induced: M

Giudice, Rattazzi 97

Predicts a very light **gravitino** = Mass suppressed by Mp:

partner of the graviton

$$m_{3/2} = \frac{F}{k\sqrt{3}M_P} = \frac{1}{k} \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^2 2.4 \text{ eV}$$

k = model-dependent coefficient

2) Gravity/Moduli/Extra-dim mediation:

...to be discussed later

Spectrum at high-energies (Q~I/R) model dependent

An example: Scalar masses = 0 (at tree-level)

Gaugino masses = $M_{1/2} \neq 0$

Lightest superpartner:

Neutralino (mixture of gaugino and Higgsino)

Higgs sector

Only 3 parameters:

$$V = (|\mu|^{2} + m_{H_{u}}^{2})(|H_{u}^{0}|^{2} + |H_{u}^{+}|^{2}) + (|\mu|^{2} + m_{H_{d}}^{2})(|H_{d}^{0}|^{2} + |H_{d}^{-}|^{2})$$

$$+ [b(H_{u}^{+}H_{d}^{-} - H_{u}^{0}H_{d}^{0}) + \text{c.c.}]$$

$$+ \frac{1}{8}(g^{2} + g'^{2})(|H_{u}^{0}|^{2} + |H_{u}^{+}|^{2} - |H_{d}^{0}|^{2} - |H_{d}^{-}|^{2})^{2} + \frac{1}{2}g^{2}|H_{u}^{+}H_{d}^{0*} + H_{u}^{0}H_{d}^{-*}|^{2}.$$

quartic coupling related to gauge-couplings

Spectrum:

2 unknown parameters (since $v^2 = \langle H_u \rangle^2 + \langle H_d \rangle^2$):

1)
$$\tan \beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}$$
 2) m_A

At tree-level:

Was a great prediction for Higgs hunters at LEP!

... but quantum effects (mostly loops of top/stop)

modify the bound:

LEP searches:

with decays to taus and bottoms

After LEP, a heavy stop is essential to keep the MSSM alive

Higgs bound:

$$m_h^2 < m_Z^2 + \frac{3m_t^4}{2\pi^2 v^2} \ln(m_{\text{stop}}/m_t) + \cdots$$

Needed to be large to be above the experimental bound

Higgs searches rules out a big chunk of the parameter space of the MSSM!

"withe spike" is left!

Giudice, Rattazzi

MSSM Higgs hunting at the LHC

Bad news: h too light to decay to WW/ZZ

A, H⁺ have very small couplings to WW/ZZ

H small regions with sizable couplings to WW/ZZ

Good news: Regions where the decays of H, A, H[†] to leptons are enhanced (Large Tanβ region)

Due to:
$$m_{\tau} = Y_{\tau} \langle H_d \rangle$$

can be larger than in the SM, if $\langle H_d \rangle$ is smaller than v

Near future:

More interestingly: MSSM could be ruled out if a Higgs → WW/ZZ with mass ~160 GeV is discovered in the first LHC run

In the long run....

Superpartners at Hadron Colliders

Superpartners at Hadron Colliders

Neutral gaugino + Higgsino mix: Mass-eigenstate = χ^0 neutralino

Charged gaugino + Higgsino mix: Mass-eigenstate = χ^+ chargino

Main consideration:

Due to *R-parity* superpartners are produced in pairs, and decay, in cascade, down to the lightest one (neutral) that, being stable, goes away from the detector

Strategy: Detect leptons or jets + Missing E_T

Final states with same-charge dilepton due to the Majorana nature of the gluino

Tevatron

From P.Wittich at "Physics at the LHC 2010" conference

susy in jets + met:generic squark/gluino production

- Large production cross section,
 bkgnds from multi-jet, Z→vv, top
- Optimize searches as a function of (Missing E_T , n_{jet})
- No excess seen so far
- Limits for 2 (2.1)/fb of data for CDF (D0)
- interpret results in mSUGRA-like SUSY scenario

20

Trileptons: Chargino-Neutralino Search, 3.2/fb

- Very clean signature:
 - Missing E_T due to undetected ν , χ^0_1
 - 3 isolated leptons, *lower momentum*

• Rejection using kinematic selections on: m_{I+I-} , n_{jets} , Missing E_T , $\Delta \phi$ between leptons...

Good agreement between data and SM prediction → set limit

Channel SM expe	ected Data
Trilepton 1.5:	± 0.2 1
Lepton+trk 9.4	± 1.2 6

160

140

Chargino-neutralino results

 interpret null result in mSugra SUSY scenario as a convenient/conventional benchmark excluded region in mSUGRA m₀-m_{1/2} space

CDF Run II Preliminary, 3.2 fb⁻¹

Excludes $m\chi^{\pm}_{1} < 164$ (154 Exp.) GeV/c²

Limits depend on relative χ^0_2 - ℓ masses

100 120 m₀ (GeV/c²)

60

D0 limit in 2.3/fb: Phys. Lett. **B** 680, 34 (2009)

2 b jets + E_{T}^{Miss} - ~q and LQ $ZH \rightarrow \nu \bar{\nu} b \bar{b}$

- missing E_T and b quarks
- Also good signal for leptoquarks and SUSY
- event selection:
 - b tagging (D0: neural-net algo)
 - two b-tagged jets, E_T^{miss}, Sign., ΣE_T
 - optimize p_T , E_T^{miss} , H_T , X_{ii} for SUSY/LQ3 signals

$$X_{jj} = \frac{p_T^{\text{jet1}} + p_T^{\text{jet2}}}{H_T}$$

low $\delta M_{(LSP, b \text{ squark})}$

hi $\delta M_{(LSP, b \text{ squark})}$

Supersymmetric top in the $e+\mu+bb+MET$, 3.1/fb

Peter Wittich

- 3rd generation again special role in SUSY
- Look for decay mode in e μ final state with $E_T^{\text{Miss}} > 18 \text{ GeV}$

 $p\bar{p} \rightarrow \tilde{t}_1\tilde{t}_1$

- Low SM backgrounds (Z→TT,ttbar)
- Reject with $\delta\Phi$ (lepton, E_T^{Miss}) cuts
- no explicit b tag required
- Consider *small* and *large* δm(stop, sneutrino)
 - drives kinematics of accepted events
- Bin events in two kinematic variables
 - HT: scaler sum of jet p_T
 - ST: scalar sum of lepton p_T , E_T^{Miss}
- Null result: set limits in sneutrino/stop mass plane

R parity conserving

DØ Preliminary Result

Blue: this result

D0 Conference Note 5937-CONF

23

From P. Jenni at "Physics at the LHC 2010" conference

The initial LHC running will already match (maybe exceed) end 2010 the Tevatron reach

A typical example; note that the missing transverse energy performance enters directly the 'Effective Mass', detectors must be well understood for these measurements

Ultimate discovery reach for SUSY particles at the LHC (indicative plots, model-dependent...)

Other MSSM goodies:

- Gauge coupling unification
- The lightest supersymmetric particle (LSP) can be Dark matter
- Local supersymmetry must incorporate gravity:

$$\{Q, Q^{\dagger}\} = P^{\mu}$$

Fits well EWPT from LEP/Tevatron

→ It has allowed us to write more than 20,000 papers