Physics Lists

Gunter Folger
Geant4 Workshop 2007
Hebden Bridge

Contents

- Introduction
- Physics lists
 - Example physics lists
 - Reference Physics Lists

Introduction

Physics List is a set of consistent physics models for each particle in application

- Physics List is responsibility of user
- Users need guidance or help
- Geant4 provided physics lists offer starting points
- Responsibility of application developer
 - To choose and, if needed, further develop
 - To validate for his use case

Physics Lists: Why in G4 space

- Share code
 - Name and version number uniquely defines configuration used
- Share experience and improvements
 - Possible across different use cases
- Enable sharing of validation
 - E.g. HEP/LHC experiments
 - But more effort needed in other areas

Constructing a list

- Collaboration between user group and Geant4
- User input
 - Identify requirements
 - Provide feedback on quality of simulation
 - Evaluate possible alternative options
- Geant4 developers provide experience/knowledge
 - Physics performance of specific processes/models
 - Evolution of physics modeling and cross sections
 - Available new options

Physics modeling choices

- EM physics processes: default well documented set exists for standard EM
 - Low energy extensions
- Hadronic models: only valid for specific energy range and specific particles
 - High energy: string models vs. parameterized
 - Medium/low energy: parameterized, cascade model, precompound model, data driven neutron transport model
 - Stopping particles: CHIPS, parameterized,
 - Elastic scattering
 - Hadronic cross-sections separate from model
- Optical photons
- Neutrino physics
- •

Why choice of physics models

- Nature is exact and fast
- Simulation is attempt to approximate nature
 - Geant4 offers choice in level of approximation versus
 CPU performance (e.g. options for multiple scattering)
- Not all physics is relevant in given simulation (e.g. low energy neutrrons)

Supported lists

- Geant4 provides physics lists with source code
 - Reference Physics lists
 - Previously called 'Educated Guess Physics Lists'
 - Examples
 - Novice examples
 - Extended examples
 - Advanced examples
- Physics lists for specific communities, supported by SLAC
 - http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/G4_Physics_Lists.html

Novice & extended examples

Novice

- N04: usage of reference physics list
- N05: demonstrates fast parameterization
- N06: using optical photons

Extended

- Electromagnetic
- Polarization
- Radiative decay
- Exotic physics

Advanced Examples: Physics Lists

- 17 (+4) advanced examples,
- Targeted for specific use case,
 - Quantitative validation for this use case, seven of these published
 - Space applications
 - Medical
 - Underground experiments, low background physics
- Selection of Physics model adapted to use case
 - Several examples have lists with EM only, and/or using
 - low energy extension for EM
 - Optical photons, Scintillation, Cherenkov radiation
 - Restricted set of hadronic physics (particles, energy)

Reference Physics Lists

- Evolution of 'Educated Guess Physics Lists'
- Wide choice of physics lists offered
 - more than 20 lists
- Cover wide range of use cases
- All lists cover all primary and secondary particles up to high energies (>TeV)

Groups of lists – hadronic options

- LHEP using parameterized models
- QGS/FTF series replaces parameterized high energy model
 - theory driven string model used for pion, protons, neutrons,
 Kaons
 - Improved cross-sections
 - Better description for stopping particles using CHIPS modeling
 - Revised elastic scattering
- Variations for modeling at medium and low energies (e.g. QGSP_BIC)
 - Cascade model, precompound model, CHIPS, low energy neutron transport

Examples

- LHEP:
 - fast, for shower simulation in calorimeter
 - Paratmeterized modeling for all hadronic interactions
 - Standard EM physics
- QGSP
 - QGS for high energy interaction, using Precompound for nuclear de-excitation
 - LEP for low energy (< 12-25 GeV)
 - LHEP models for particles other than proton, neutron, pion, Kaon
 - Elastic scattering was changing
 - Standard EM physics
- QGSP BERT HP
 - Radiation background studies good modeling for neutron production and transport
 - Usage of LEP reduced by BERT for nucleons, pions, Kaons below 10 GeV
 - Add HP neutron transport for neutrons < 20MeV
- QGSC
 - Like QGSP with improved nuclear fragmentation provided by CHIPS
- FTFP
 - Alternative string model, under revision
- QGSP EMV, LHEP EMV
 - Alternate EM physics, using faster multiple scattering similar to 7.1

Inventory of Reference PL (G4 8.3)

- LHEP
- LHEP EMV
- LHEP BERT
- LHEP_BERT_HP
- LHEP_BIC
- LHEP_BIC_HP
- LHEP_PRECO
- LHEP_PRECO HP
- LHEP HP
- LHEP_LEAD
- LHEP_LEAD_HP

- QGSP
- QGSP EMV
- QGSP EMX
- QGSP NQE
- QGSP EMV NQE
- QGSP BERT
- QGSP BERT EMV
- QGSP BERT HP
- QGSP_BERT_NQE
- QGSP BERT TRV
- QGSP_BIC
- QGSP BIC HP
- QGSP_HP
- QGSP QEL

- QGSC
- QGSC EMV
- QGSC EFLOW
- QGSC_LEAD
- QGSC_LEAD_HP
- LBE
- FTFC
- FTFP EMV
- FTFP
- QBBC

Lists in italic deleted in 9.0

Improvements in Reference PL

- Evolution of physics modeling
 - New developments offered in experimental lists first
 - Adopt mature improvements
- Change key options
- Solve configuration problem
 - Move physics lists into Geant4 source and build system
 - Integrates physics lists with Geant4
- Obsolete and delete superfluous lists, or where better options exist
- Code cleanup and code migrations

New developments

- Alternative EM physics options
 - Default uses option for best physics in multiple scattering
 - EMV variants providing multiple scattering similar to 7.1
 - EMX variants offer new developments (eXperimental) from EM
- GN used by default (8.0)
- Improved elastic scattering (8.1 & 8.2)
- Improved CHIPS based processes for capture at rest (8.1)
 - All lists based on QGS and FTF
- QGSC _EFLOW using energy flow nuclear fragmentation(8.2)
- Quasi-elastic scattering provided by CHIPS added to lists based string models (8.3)
 - New lists QGSP_NQE, QGSP_EMV_NQE, and QGSP_BERT_NQE without quasi-elastic for short term backward compatibility

Physics list moved to G4 source

- Integrate physics lists into Geant4 source code and build system, removes difficulties in using physics lists (8.2):
 - Avoid extra step to build physics list
 - Consistent environment, lists build by default
 - Simplified structure → only two libraries
 - One for 'lists', one for 'builders'
 - Libraries fully integrated with Geant4
 - No more problem to use granular/shared libraries
 - No need to misuse EXTRALIBS variable

Obsolete and removed Lists

- Starting with 8.2, declare several lists obsolete
- In 9.0, deleted the following:
 - All 4 lists using Mars leading particle bias ..._LEAD
 - Due to removal of Mars code itsself
 - LHEP BIC and LHEP BIC HP
 - use QGSP_BIC or QGSP_BIC_HP
 - LHEP_HP and QGSP_HP
 - use QGSP BERT HP or QGSP BIC HP
 - LHEP PRECO
 - use QGSP_BIC

Plans

Improve Documentation

- draft pages available at http://cern.ch/geant4/support/proc_mod_catalog/physics_lists/physicsLists.shtml
- Much still to be done
- Continue to provide new model developments
 - E.g. add quasi-elastic channel for string models
 - New options as new (experimental) physics lists
 - Adopt mature options
- Better integrate physics lists for communities like underground experiments, space users, ...

Summary

- Reference Physics lists
 - User request for better integration in Geant4 implemented in 8.2
 - Structure has been improved with 8.0 and 8.1
 - Use standard builder for EM, remove TMP program
 - Improved or new models always made available
 - Gamma Nuclear is included by default
 - Improved elastic scattering
 - Revised stopping physics now using CHIPS model
- Advanced Examples physics list
 - Targeted to specific problems, often with validation

Backup slides.....

Cleanup: regrouping physics

Before 8.0

- EMPhysics
 - Optionally including gammanuclear
- GeneralPhysics
 - Decay unstable particles
- MuonPhysics
 - EM physics for muons and tau
 - Capture at rest for mu-
- IonPhysics
 - Ionisation, Mult. Scattering, elastic for D, T, He and generic Ion
 - No inelastic hadronic process
- HadronPhysics..xyz
 - Hadron Ineleastic

Since 8.0

- G4EmStandardPhysics
 - Standard EM physics list for all particles
 - Removes TMP file
- G4EmExtraPhysics
 - Synchroton Radiation & GN Physics
- G4DecayPhysics
- G4Hadron(Q)ElasticPhysics
 - Hadron Elastic scattering
- G4(Q)StoppingPhysics
 - Stopping Physics from LHEP or CHIPS
- G4IonPhysics
 - Hadron Inelastic for d, t, α

G.Folger - Geant 4 Workshop 2007, Hebden Bridge Hadron Ineleastic

- Use EM builder from EM standard
 - Removed template meta programming based class plist.tmp
- Gamma Nuclear physics enabled by default
 - Remove obsolete lists with gamma nuclear
- Added physics lists with 7.1 multiple scattering
 - QSQP_EMV and LHEP_EMV
- Added list for radiation studies
 - QGSP_BERT_HP

Revision of particles

- Added list with more performant em options QGSP_EMX
- Introduce Chips modeling for stopping particles in all physics lists based on QGS and FTF.
 - Replaces capture processes for μ-, pi-, and K-
 - Replaces annihilation at rest for anti-proton and antineutron
- Updated elastic scattering in all physics lists based on QGS and FTF using improved multiple scattering
- Use Bertini for Kaons in BERT lists
- Use Binary for ions in BIC lists
- New experimental physics list QBBC, minimizing use of LHFP models

- Integrate physics lists into Geant4 source code and build system
- Neutron tracking cut
- New lists
 - QGSC_EFLOW using new CHIPS energy flow
 - QGSC_EMV
 - QGSP_BIC_HP
 - QGSP_QEL variant using CHIPS systematics for elastic scattering
- Declare several lists obsolete
 - LHEP: _HP, _BIC, _BIC_HP, _PRECO, and QGSP_HP
 G.Folger Geant4 Workshop 2007,
 Hebden Bridge

- Add quasi-elastic scattering to all QGS physics lists
 - For backward compatibility and for testing, new temporary lists without quasi-elastic scattering: QGSP_NQE, QGSP_EMV_NQE, and QGSP_BERT_NQE
- QGSC lists use new CHIPS model for muon capture at rest
- Use HElastic model for all particles with kinetic energy T> 1GeV, except in Hydrogen
- Skin parameter of multiple scattering set to 0
 - No computation of linear distance to boundary
- FTFP and FTFC use revised FTF model
- New QGSP _BERT_TRV
 - Restrict use of Bertini cascade to particles with T<5.4GeV, by default it is used up to T=9.9 GeV

- Rename components for EM physics
 - G4EMStandardPhysics, the default EM option
 - G4EMStandardPhysics_option1, used by _EMV variants
 - Was G4EMStandardPhysics71
 - G4EMStandardPhysics option2, used by EMX variants
 - Was G4EMStandardPhysics72
- Removed obsolete lists
- Threshold for use of FTF model lowered to 5GeV
 - FTF is under development

Physics Lists supported by SLAC

- Four lists supported for specific communities
 - BaBar, medium energy vertex/tracker/ calorimeter for B physics
 - GLAST, medium energy tracker/calorimeter for space applications
 - ILC, high energy tracker/calorimeter for colliders(ILC)
 - Space Electronics Physics List
- Simple and Fast Physics List for getting started
- Distributed and documented via web page
 - http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/G4_Physics_Lists.html
- No code re-use between different lists