The Post Discovery Era

What do we do now?

Higgs Quo Vadis Matt Strassler 3/11/13

Prioritization

- Huge data sets at ATLAS, CMS, LHCb
- Vast array of possible signals of new phenomena
- Disturbingly finite human resources

Crucial to set priorities wisely:

- Choose searches with good balance of
 - Experimental motivation:
 - Ease of analysis
 - Straightforward event selection, small backgrounds, resonances
 - Opportunity and ingenuity
 - It's never been done so it might allow an immediate discovery
 - Theoretical motivation:
 - Many theories (or well-loved theory) predict this signal
 - Some other experiment suggests this signal
- Be efficient in use of resources by
 - Combining multiple searches in one analysis

Post-Discovery & Post-Easy-Signals

What do we learn from 2011-2012?

- Higgs boson?
 - Yes! (and SM-like)
- TeV-scale colored particles with colorless particles in their decays?
 - No! (roughly speaking; at least, they are not common)

These two facts interplay; both are relevant for naturalness

- Data shows no conflicts with the Standard Model
- But the Standard Model is not Natural

What's going on? And how do we prioritize our efforts?

(Will assume in this talk that no discovery shows up by summer!)

Naturalness is Profound

We often say "Naturalness problem has to do with the small h mass".

- But this assumes v = 246 GeV; in that case the problem is with m_h Really the problem is with the minimization of V(H)
- $V_{tot} = V_{cl} + V_{qu}$ where $V_{qu} =$ Zero-Point Energy of vacuum
 - Zero Point Energy depends on particle masses, which depend on $\langle H \rangle = v$

• So
$$V_{tot} = V_{tot}(H) = #A^4 + #A^2 H^2 + #H^4 + ...$$

- μ^2
Here A is UV cutoff on SM as effective theory

• Natural solutions: $m_h^2 \sim \Lambda^2$ and (i) v = 0 or (ii) $v \sim \Lambda$

Zero-Point Energy + H-Field-Dependent Masses + Dimensional Analysis Nothing More Required

Matt Strassler

Is Our World "Natural"?

Natural theories must remove UV sensitive top contribution to m_h^2

- Top quark must have large coupling to this Higgs
- hgg coupling appears to be SM-like; induced by top loops

To cancel top loops typically expect top partner

- Top prime (colored)
 - Partial solution typically only to one loop, UV completion at 10 TeV
- Top squark (colored)
 - But top squark is a scalar and has its own naturalness problem
 - Requires a gluino to cancel off its own UV-sensitive loops

So typically expect TeV-scale colored particles at LHC

- But no sign of gluinos or top-primes or indeed anything new and colored
 - So what is up?

Matt Strassler

Naturalness Quo Vadis?

Is Naturalness

Delayed?

- Colored partner particles heavier than expected; too much for 8 TeV LHC?
- Is Naturalness Obscured?
 - Gluino, top partner decaying without MET and/or leptons/photons
 - Pure QCD final states with many jets and no simple resonances
 - Energy going into soft or hyper-soft objects signals (e.g. quirk effects)
- Is Naturalness Hidden?
 - Maybe top partners are in hidden sector? (Twin Higgs as existence proof)
- Is Naturalness WRONG? (Need New Guideposts!)
 - Dark Matter
 - Neutral member of electroweak multiplet
 - Part of an entire Hidden Sector
 - Others?

Delayed Naturalness

If colored partners out of reach, target color-neutral particles

- Especially Higgs partners!
 - SU(2) doublets
 - Possibly spin-0, ¹/₂
 - Often near-degenerate (if SU(2) multiplet structure little broken)
- Also W partners
 - SU(2) triplets; spin?
- Singlets too, but often very low cross sections

Challenging

- Small production rates, many possible decay modes
- Often difficult to extract from large top & electroweak backgrounds
- Need dedicated searches for each model and mode
- Question: are we covering all the cases (not just SUSY)?

Obscured Naturalness

Possible (any good models?) that new physics hiding in QCD backgrounds?

- Few searches attempted with all-jet backgrounds
 - 3-jet resonances, pairs of 2-jet resonances
 - Black holes (rising multi-jet cross-sections at high ST)
- QCD measurements could be turned into opportunities

Possible that signals hide due to presence of exotic objects?

- Long-lived particles?
 - Particles decaying in flight can cause mis-reconstruction
 - Quality cuts may remove events with non-prompt jets/leptons
- Clustered particles?
 - Non-QCD jet-like objects may be treated as boring QCD jets
 - substructure, lepton-jets
 - May also include long-lived objects
- Soft or hyper-soft signals?
 - Suppose 1.5 TeV goes into a few hard objects and many soft ones
 - Would we identify such signals?
 - `Quirks' [particles with SM charge and infracolor/hidden valley charge]
 - Strong-coupling hidden-valley quarkonium?

Wait! Were We Thorough?

Not yet! (at least, not quite)

Signals with very low MET, high jet multiplicity, high but not ultra-high S_T

- Natural RPV SUSY, HV SUSY (inclu. Stealth)
 - i.e. gluino, stop, higgsino not out of natural range
- Top prime with unusual decays to top + jets.
 are far less constrained than people think
- natural models below TeV still possible!

Missing from the search menu (*still*!) (Lisanti, Schuster, Strassler & Toro 2011)

- Lepton + 6 or more jets (look at n_{jet}, n_b, S_T distributions)
 - CMS, ATLAS finally have searches but not optimized for this purpose!
- Curiously ATLAS many-jets+small MET is sensitive (but how sensitive?)
 - Tau + many jets
 - Lost lepton + many jets

Hidden Naturalness

- Colorless top partners
 - A role for hidden sector?
- Cancellation of top loop by hidden partner (twin Higgs, folded SUSY)

- As with little Higgs, only one-loop delay of hierarchy problem
- Experimental signatures may be quite limited
 - Hidden-valley-type signals?
- We need more examples of how this can work from the theory side!
 - If there are any...

In this case we do not know where to go on basic theoretical grounds.

But we do know the SM isn't complete

- Strong CP problem
 - Axions?
- Neutrino masses
 - → sterile neutrinos (But at what mass scale? Composite?)
- Dark Matter
 - But how coupled to SM? And what mass scale?
 - Axions? WIMPs? Dark-Sector [inclu. hidden valley] Massive Particles?
- LHC WIMP searches motivated
- LHC dark-sector (inclu. hidden-valley) searches also motivated
 - Needs more theoretical work to improve theoretical prioritization
 - Prioritization from e.g. Pamela signals too time-dependent

What About the Higgs Sector?

The 125 GeV h boson has a role to play in all of these possibilities

- May appear in decays of colorless or heavy colored BSM particles
 - Or even in rare top decays
- May decay to colorless BSM particles

Other members of Higgs sector may be waiting for us...

- Narrow heavy states decaying mainly to bb, tt, rarely to WW,ZZ, γγ
 - Possible decaying to h itself
- Charged states decaying to *tb*, more complex final states
- Lightweight mostly-singlet states decaying to
 - Light SM particles
 - Yet more singlets which in turn...

Non-SM h Production

A particle with m > 125 GeV might decay to *h*:

- Top quark $(t \rightarrow h q)$
 - Use t pairs where one $t \rightarrow lv b$ and other $t \rightarrow q h$,
 - $h \rightarrow bb$ resonance [gives lepton + 3 b's, reconstruct it]
 - $h \rightarrow WW \rightarrow$ one or two leptons [gives SS- or tri-leptons]
- Something unknown
 - Higgsino, Wino $\rightarrow h$ + invisible (perhaps + soft-ish jets or lepton)
 - $t' \rightarrow h + t, b' \rightarrow h + b$
 - $H^0 \rightarrow h^0 h^0$ in 2-Higgs doublet (e.g. SUSY) or doublet+singlet models
 - $W' \rightarrow Wh, Z' \rightarrow Zh$

Question for theorists:

- When a priority even without **other** signal for the heavy particle?
 - i.e. when is this likely to be discovery channel of the new particle?

Non-SM h Production

Displaced *h* possible:

- Example: Higgsino $\rightarrow h + gravitino$ or singlino
- Often 2 per event
- Or displaced h + displaced Z or γ

Searches at ATLAS, CMS, LHCb:

- Possible 2nd vertex in event, or MET if lifetime long
- Typically without a mass constraint, so general purpose method
- Displaced $\mu\mu$, ee, μ e vertices from WW, $\tau\tau$ (both leptonic)
- Jet(s) from common displaced vertex with muon track
 - From *bb*, *cc*
 - From *WW*, $\tau\tau$ (one leptonic)
- Or jet(s) from displaced vertex with prompt lepton from elsewhere
 - From any hadronic decay

Non-SM h Decays: General Motivation

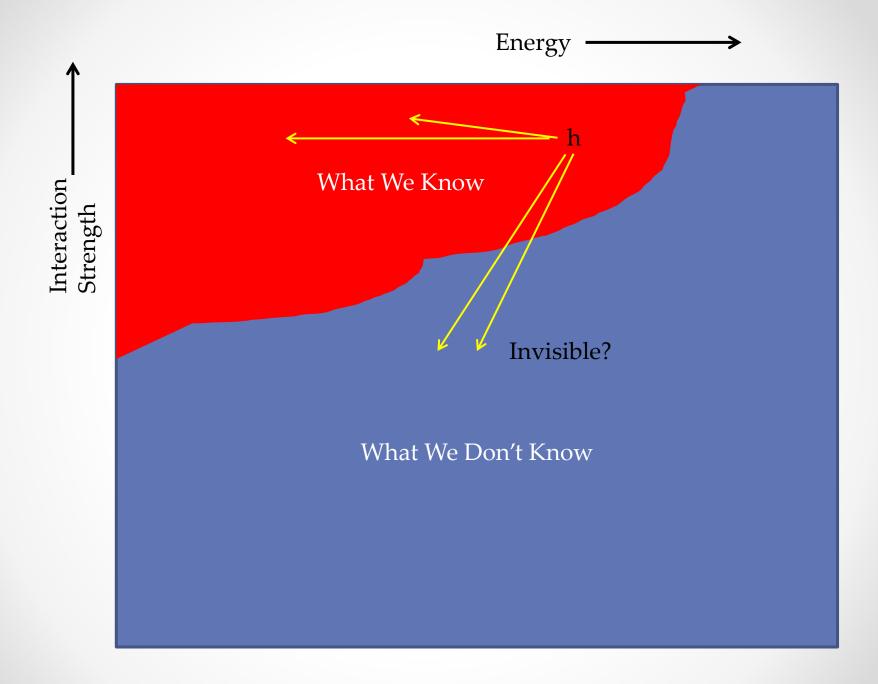
- 2011-2012: ~500,000 Higgs(-like) particles within ATLAS and CMS
 - Fewer in LHCb but still potentially interesting
 - How many were triggered we don't know
 - But at least 1% on the lepton(s) from Wh (Zh), perhaps 1%-2% on parked VBF production
- SM decays have small rates
 - bb, ττ from small couplings
 - WW*,ZZ* are off-shell
 - gg, γγ, Zγ through loops
 - → Small new interactions can give (as many theorists have pointed out)
 - Unexpected enhancements of rare SM decays
 - Unexpected non-SM decays (as common as allowed: 10-20%!)
- Most have not been looked for yet, so discoveries at 5σ still possible before 2015, unlike SM Higgs measurements

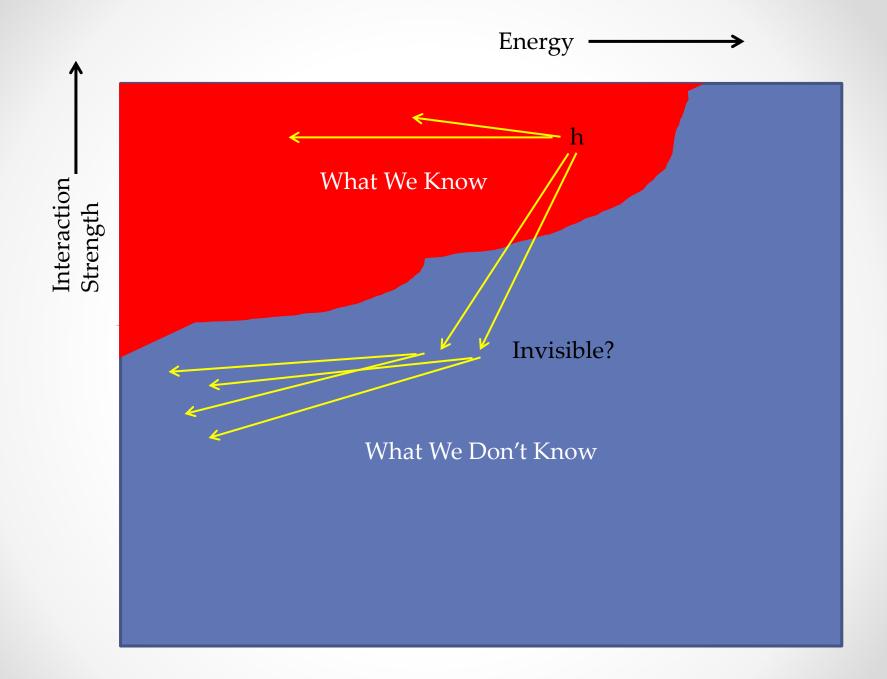
Non-SM h Decays

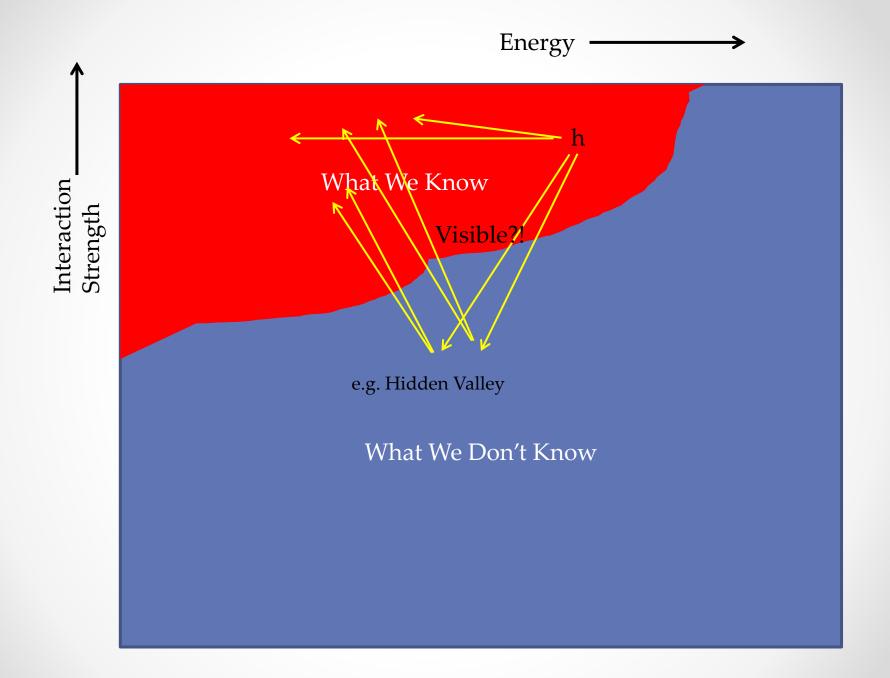
- Yes, measure all SM decay modes with the highest possible precision
 - But let's not waste resources!!
 - We have many places to look for possible discoveries!
- Rare modes: h (or another Higgs) may decay with much-enhanced rate
 - Zg, μμ, τμ
- Decays to non-SM particles
 - WIMPs (mostly singlet)
 - Singlets with no weak interactions [dark sectors/hidden valleys]

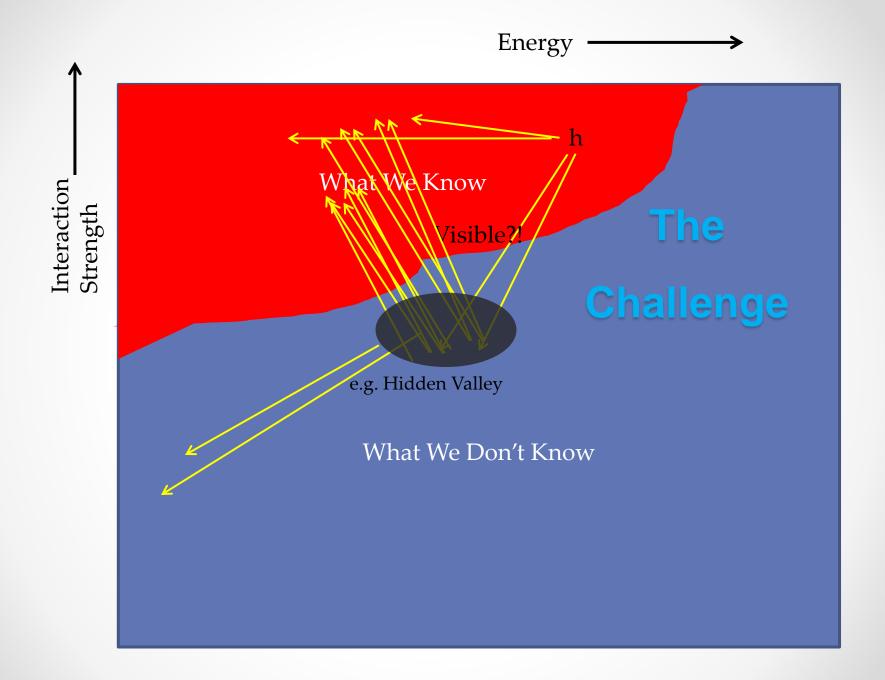
Invisible h Decays

Non-SM Visible h Decays


Non-SM Partly Visible h Decays


Singlets


Rich singlet sector possible, as complex as SM


(Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles...)

- Minimally constrained by previous data!
- Few SM particles couple to singlets in renormalizable way
 - U(1) hidden gauge boson V coupling to U(1) hypercharge boson $(F^{\mu\nu}F'_{\mu\nu})$
 - Scalar S coupling to doublet Higgses (SH*H, S*SH*H)
- But then S or V can couple to other singlets in renormalizable way
 - E.g. Sψψ
- Or additional BSM particles can allow renormalizable couplings
 - E.g. Bino-quark-squark
- Other couplings may be induced by strong dynamics in hidden sector
- Eventually some metastable singlets may decay back to SM particles
 - This can happen promptly or well-displaced inside the LHC detectors

Priority Searches: non-SM Decays

Invisible – very high priority

Entirely visible – very high to high priority include

- $(\ell^+ \ell^-)(\ell^+ \ell^-)$, $(\gamma \gamma)(\gamma \gamma)$, $(bb)(\tau \tau)$
- (ℓ+ℓ)(qq) , (γγ)(gg) , (γγ)(bb) , (bb)(bb)
- $(\ell^{+} \ell) \gamma$, $(bb)(\mu \mu)$, $(\tau \tau)(\mu \mu)$, $(\tau \tau)(\tau \tau)$

Partly visible (i.e. not entirely invisible) – harder to prioritize

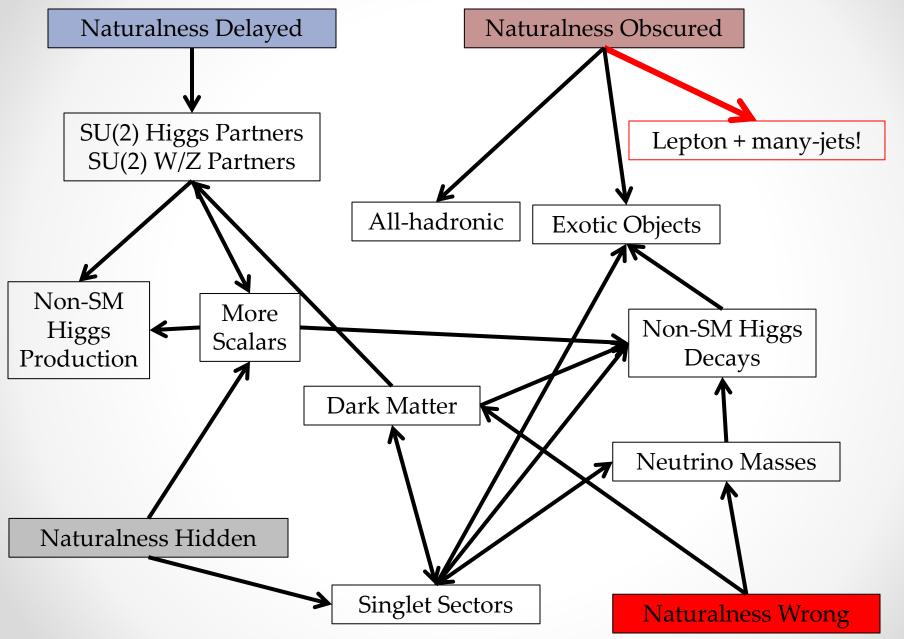
- γ + MET
- *l*⁺*l*⁺ + MET (non-resonant leptons)
- $\ell^+ \ell \ell^+ \ell^- + MET$ (resonant or non-resonant leptons)
- $\gamma\gamma$ + MET, $\gamma(\gamma\gamma)$ + MET (resonant or non-resonant photons)

To exotic objects

Matt Strassler

- Long-lived low-mass neutral particles decaying in flight
- Clusters of low-mass neutral particles decaying promptly or in flight
- Soft final states (e.g. $h \rightarrow 8 b$'s)

Dark sector with dark photon HV with U(1) factor or ρ -like meson


Dark Matter in split multiplets HV with stable fermions

Final State	Theoretical Motivation	Experimental Motivation
(l+ l-)(l'+ l'-)	High Dark Matter models with dark photon or "gluon" Hidden composite vector Light Scalar (m < 1GeV, ℓ = μ)	Very High Ready data sample from h → 4 ℓ 3 resonances (assume 2 w/ same mass?) Small Backgrounds so high sensitivity High trigger & selection efficiency (may need to relax isolation)
(үү)(үү)	Medium Hidden composite scalar Pseudoscalar in extended H sector	Very High 3 resonances (assume 2 w/ same mass?) Very small backgrounds → high sensitivity Good trigger & selection efficiency (should be!) (may need to relax isolation)
(bb)(ττ)	Very High NMSSM and others with h → aa Doublet+singlet h sectors Many DS/HV models	Low 3 Resonances but very challenging Events hard to reconstruct (requires MET) Low trigger and selection efficiency Big <i>tt</i> backgrounds Reduced branching fraction vs. 4 <i>b</i> 's

Summary of Post-Discovery Era

- Is Naturalness Delayed, Obscured, Hidden or Wrong?
 - Theoretical and phenomenological work needed!
 - Electroweak and singlet production means tough slogging ahead
 - Need to close big search gap using lepton + many-jets search
- Is it SM or not?
 - Precision measurements of easily measured SM h production/decays
 - BUT DIMINISHING RETURNS WILL SHORTLY SET IN!
 - Search for other scalars as in MSSM, NMSSM, Little Higgs, HV
 - Search for non-SM production modes
 - New particles decaying to h
 - Rare t decays
 - Note: theorists need to look into rare t, W decays!
 - Search for non-SM decay modes (role for parked/delayed data)
 - Systematic prioritization needed
 - Prompt visible, prompt partly visible
 - Exotic: long-lived, clustered, or both; or soft

Matt Strassler

Additional Slides

Final State	Theoretical Motivation	Experimental Motivation
(l+ l-)(l'+ l'-)	High Dark Matter models with dark photon or "gluon" Hidden composite vector Light Scalar (m < 1GeV, ℓ = μ)	Very High Ready data sample from h → 4 ℓ 3 resonances (assume 2 w/ same mass?) Small Backgrounds so high sensitivity High trigger & selection efficiency (may need to relax isolation)
(үү)(үү)	Medium Hidden composite scalar Pseudoscalar in extended H sector	Very High 3 resonances (assume 2 w/ same mass?) Very small backgrounds → high sensitivity Good trigger & selection efficiency (should be!) (may need to relax isolation)
(bb)(ττ)	Very High NMSSM and others with h → aa Doublet+singlet h sectors Many DS/HV models	Low 3 Resonances but very challenging Events hard to reconstruct (requires MET) Low trigger and selection efficiency Big <i>tt</i> backgrounds Reduced branching fraction vs. 4 <i>b</i> 's

Final State	Theoretical Motivation	Experimental Motivation
(l+ l)(qq)	High Dark Matter models with dark photon or "gluon" Hidden composite vector Light Scalar (m < 1GeV, ℓ = μ)	High Often higher branching fraction than $h \rightarrow 4 \ell$ Much bigger backgrounds than $h \rightarrow 4 \ell$ 3 resonances but not as high resolution Lower trigger efficiency (may need to relax isolation)
(γγ) (bb) (γγ) (gg)	Medium Hidden composite scalar Pseudoscalar in extended H sector	High Often higher branching fraction than $h \rightarrow 4 \gamma$ Much bigger backgrounds than $h \rightarrow 4 \gamma$ 3 resonances but not as high resolution Lower trigger efficiency (may need to relax isolation)
(bb)(bb)	Very High NMSSM Other extended H sectors Scalar mixing with known h Many DS/HVs	Very Low? 3 Resonances but poor resolution Low trigger and very low selection efficiency Requires boosted- <i>h</i> methods & <i>Wh</i> events (probably not enough events in 2011-2012) Higher branching fraction than 4 <i>b</i> 's

Final State	Theoretical Motivation	Experimental Motivation
(ℓ+ ℓ ¯) γ	$\begin{tabular}{l} \hline Medium \\ Dark Matter models with dark photon \\ or "gluon" \\ Hidden composite vector \\ Light Scalar (m < 1GeV, \ell = \mu) \\ Often rare \end{tabular}$	Very High Ready data sample from <i>h</i> → <i>Z</i> γ 2 resonances, one known Small Backgrounds so high sensitivity High trigger & selection efficiency (may need to relax isolation)
(ττ)(μμ)	High NMSSM and others with h → aa Relevant if m _a < 2m _b Doublet+singlet h sectors Many DS/HV models	High? (better or worse than 4τ?) Good dimuon resonance Hard to fully reconstruct (requires MET) Moderate (?) backgrounds (must relax isolation)
(bb)(µµ)	High NMSSM and others with h → aa Doublet+singlet h sectors Many DS/HV models But signal is often too low	Medium 3 Resonances, poor resolution on 2 Very few events! Big <i>tt</i> backgrounds

Prioritizing: Partially Visible Decays

Examples which are experimentally "easy" but can't be reconstructed:

- γ + MET
- *l*⁺*l*⁺ + MET (non-resonant leptons)
- $l^+ l l^+ l + MET$ (resonant or non-resonant leptons)
- $\gamma\gamma$ + MET, $\gamma(\gamma\gamma)$ + MET (resonant or non-resonant photons)
- ...
- If MET is large, pick up in existing invisible searches
- If MET is smaller, pick up in previous visible searches

Quite difficult to prioritize (few theory studies, many possible final states)

- Suggest:
 - Experimentalists: complete first round of invisible & fully-visible searches
 - Theorists: do some studies in coming months
 - Then compare and evaluate the opportunities

Prioritizing: Decays to Unusual Objects

- Unusual Objects means
 - New particles with displaced decays
 - Clusters of new particles with prompt or displaced decays
 - Soft final states
- Many of these searches cannot reconstruct *h* resonance
 - In this case, can use generic search for unusual objects -- not h-specific
 - Or require the jets from VBF or the lepton(s) from *Wh*, *Zh*
- Only thoroughly studied case is "lepton-jets"
 - Hidden particles with m < few GeV decaying to lepton pairs, hadron pairs
 - Possibly produced in clusters
- Neither theorists nor experimentalists can study this alone
 - Must communicate and do joint studies
 - Need to plan workshops for later in 2013

Matt Strassler

Obscured Naturalness

Can long-lived particles hide a signal?

- Long-lived particles pose detector challenges
 - Particles decaying in flight can cause mis-reconstruction
 - Quality cuts may discard events with non-prompt jets/leptons
- So maybe signals could lie mostly in discarded or misinterpreted events
- Some searches for long-lived particles have been done
 - Displaced muon pairs
 - Displaced vertices with several reconstructed tracks
 - Displaced vertices in ATLAS muon system
- Quite difficult to infer what might have slipped through
 - Need to have more systematic program covering more ground
- Extensive workshop on this subject in summer/fall 2013??

Obscured Naturalness

Can soft or hyper-soft signals hide new phenomena?

- Suppose 1.5 TeV of energy goes into
 - 2 hard back-to-back jets and ~ 20 gluons with pT = 5-50 GeV?
 - 2 hard back-to-back jets and ~ 200 photons with pT = 0.1 5 GeV?
 - 4 hard jets and 250 well-spread tracks with pT = 0.3 10 GeV?
 - 2 leptons surrounded by 40 quarks/antiquarks with pT=3-30 GeV?
 - How does isolation work here?
- Would we identify such signals?
 - What models can generate them?
 - `Quirks' [particles with SM charge and infracolor/hidden valley charge]
 - Strong-coupling hidden-valley quarkonium?
 - Can we calculate them? [often no; a lot of guesswork involved]
 - Many search strategies not yet developed
 - Needs to be done in 2013 so searches can be performed in 2014
 - One trick: W + photon or dijet or dilepton resonance + soft activity

Dark Sectors (and/or Hidden Valleys)

Sectors of SM Singlets:

- Very little constrained by previous data!
- Motivated by known BSM:
 - Sterile Neutrinos (for neutrino masses)
 - Dark Matter
- Dark Sector (>1 particle) simple if all particles invisible
 - MET signals only

Phenomenologically identical or similar to minimal case of one particle

- (Partially?) Visible Dark Sector (i.e. Hidden Valley-type)
 - With multiple particles, visible or partially visible decays often possible
 - If interactions, then rich set of phenomenological signatures available

Non-SM Visible h Decays

Non-SM Partly Visible h Decays

 $h \rightarrow invisible$

Singlets

Singlets (Dark Sector; Twin Higgs; NMSSM; Hidden Valley; Unparticles...)

- Minimally constrained by previous data!
- Often produced in decay of something heavier
- May be stable → MET
- May decay to SM particle pairs → visible
 - Couplings may be very small ->
 - Masses may be small
 - Lifetimes may be long
- May decay to other singlets which in turn...