Leptonic & semileptonic B decays at Belle

Youngmin Yook

yookym@gmail.com

Yonsei University Seoul, Korea

Outline

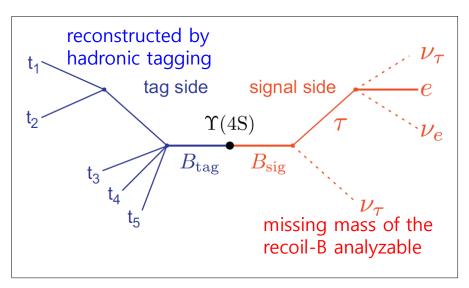
Semileptonic *B* decays:

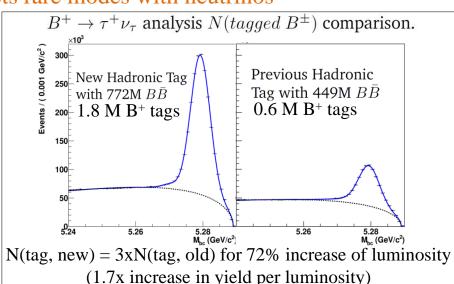
$$B \to h\ell\nu_{\ell} \quad (\ell = e, \mu)$$

$$(B^0 \to \pi^+ \ell \nu, B^+ \to \pi^0 \ell \nu, B^0 \to \rho^+ \ell \nu, B^+ \to \rho^0 \ell \nu, B^+ \to \omega \ell \nu, B^+ \to \eta^{(\prime)} \ell \nu)$$

Leptonic B decays:

$$B^{+} \to \ell^{+} \nu_{\ell} \left\{ \begin{array}{c} B^{+} \to e^{+} \nu_{e}, B^{+} \to \mu^{+} \nu_{\mu} \\ B^{+} \to \tau^{+} \nu_{\tau} \end{array} \right\}$$


We fully reconstructed a *B*-meson in order to handle the invisible neutrinos


Hadronic Tagging Method

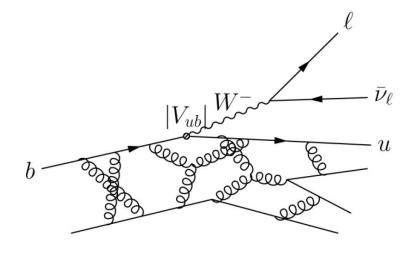
Complete tagging of a B in Y(4S)->BB

- → Constrain the charge, flavor, 4-momentum of the recoil-B
- → Results in very high-purity (but with low efficiency)
- \rightarrow Good continuum (e⁺e⁻ \rightarrow u,d,s,c) suppression
- → Reconstructs rare modes with neutrinos

Reprocessed Data: improved detection efficiency for low p_T tracks and neutral particles **Modified Hadronic Tag**: Neurobayes algorithm + Addition of more B/D tagging modes

→ increased statistics, better sensitivity

Measurements of $|V_{ub}|$ from Exclusive $B \to h\ell\nu$


 $(h = \pi^{+}, \pi^{0}, \rho^{+}, \rho^{0}, \omega, \eta, \eta^{'}, \text{ Lepton includes } e \text{ and } \mu)$

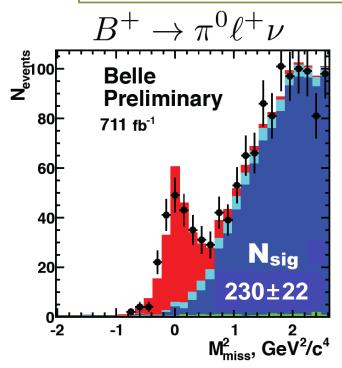
- Precision measurement of the $B \to X_u \ell \nu$ branching fraction
- With increased and reprocessed data and new hadronic tagging

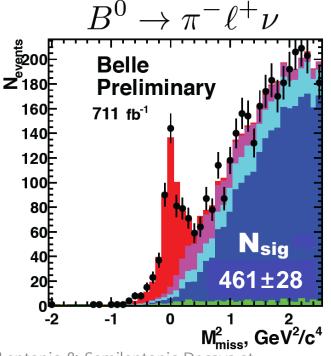
With exclusive $B \to \pi \ell^+ \nu_{\ell}$, for instance, $|V_{ub}|$ can be extracted from the differential decay rate

$$\frac{d\Gamma(B \to \pi \ell^+ \nu_{\ell})}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_{+}(q^2)|^2$$

Theory input is needed to determine the form factor $f_+(q^2)$.

$B \to \pi \ell \nu$

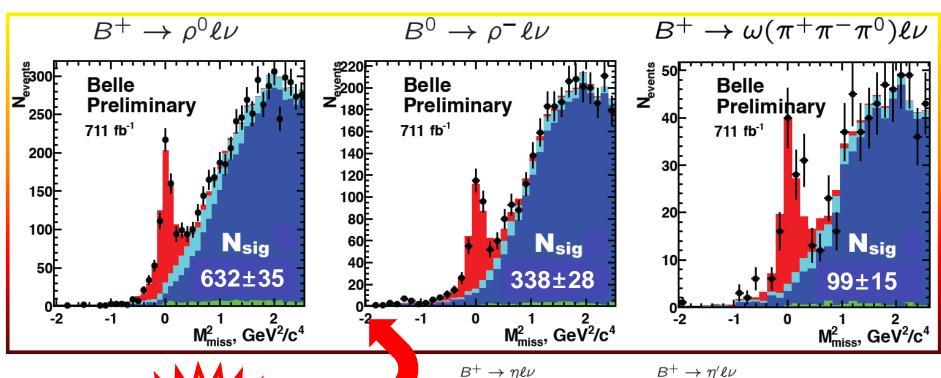

- Full $\Upsilon(4S)$ data used $(N(B\bar{B}) = 772\text{M} / 711\text{fb}^{-1})$
- Signal yield extracted from maximum-likelihood fit to M_{miss}^2


$$M_{miss}^2 = (E_{CM} - E_{B_{tag}} - E_{B_{sig}})^2 - (P_{B_{tag}} - P_{B_{sig}})^2$$

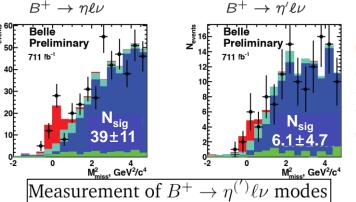
E and $P_{B_{tag}}$: Energy and momentum of the tagged-B

E and $P_{B_{sig}}$: Energy and momentum of signal side B particles

The cleanest measurement of these modes!

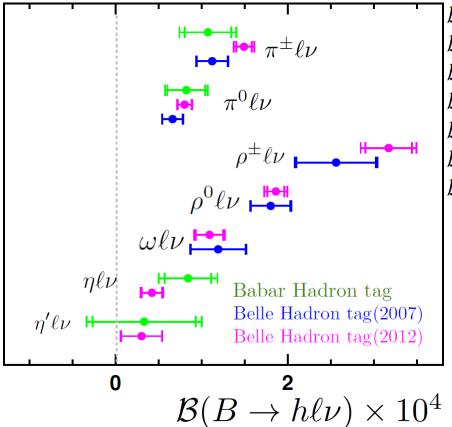

signal
B --> ρ l ν
other X_u l ν
B --> X_c l ν
continuum

stat. error only for $N_{\rm sig}$


Major systematic uncertainty from hadronic tag efficiency ~ 5.0%

Leptonic & Semileptonic Decays at Belle @ ICHEP 2012

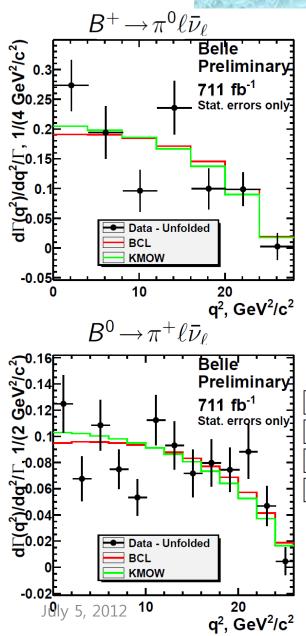
Other $B \to h\ell\nu$



Great achievements in CLEAN SIGNAL EXTRACTION of B-plu and B-wlu?

signal other X_u l v B --> X_c l v continuum

Branching Ratios of the $B \to h \ell \nu$



$$\mathcal{B}(B^{0} \to \pi^{-}\ell^{+}\nu_{l}) = (1.49 \pm 0.09 \pm 0.07) \times 10^{-4} \\
\mathcal{B}(B^{+} \to \pi^{0}\ell^{+}\nu_{l}) = (0.80 \pm 0.08 \pm 0.04) \times 10^{-4} \\
\mathcal{B}(B^{0} \to \rho^{-}\ell^{+}\nu_{l}) = (3.17 \pm 0.27 \pm 0.18) \times 10^{-4} \\
\mathcal{B}(B^{+} \to \rho^{0}\ell^{+}\nu_{l}) = (1.86 \pm 0.10 \pm 0.09) \times 10^{-4} \\
\mathcal{B}(B^{+} \to \omega\ell^{+}\nu_{l}) = (1.09 \pm 0.16 \pm 0.08) \times 10^{-4} \\
\mathcal{B}(B^{+} \to \eta\ell^{+}\nu_{l}) = (0.42 \pm 0.12 \pm 0.05) \times 10^{-4} \\
\mathcal{B}(B^{+} \to \eta'\ell^{+}\nu_{l}) < 0.57 \times 10^{-4} \otimes 90\%CL.$$

[Belle Preliminary Results]

→ Significantly improved branching ratios compared to the past results.

Values of $|V_{ub}|$ from $\mathcal{B}(B \to \pi \ell \nu)$

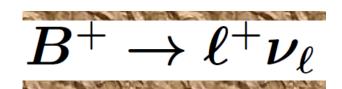
(V_{ub}) (CKM fitter 2012)	$= [3.14^{+0.21}_{-0.10}] \times 10^{-3}$
--------------------------------	---

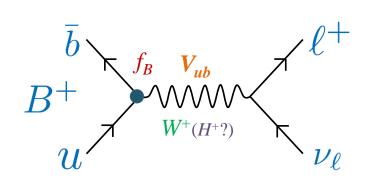
Belle preliminary

$X_u l v$	Theory	$q^2[GeV^2]$	$ V_{ub} $ x 10^3
	KMOW ^[1]	<12	$3.30 \pm 0.22 \pm 0.09^{+0.35}_{-0.30}$
π^0 lv	Ball/Zwicky ^[2]	<16	$3.62 \pm 0.20 \pm 0.10^{+0.60}_{-0.40}$
, , , , , , , , , , , , , , , , , , ,	FNAL ^[3]	>16	$3.30 \pm 0.30 \pm 0.09^{+0.36}_{-0.30}$
	HPQCD ^[4]	>16	$3.45 \pm 0.31 \pm 0.09^{+0.58}_{-0.38}$
	KMOW ^[1]	<12	$3.38 \pm 0.14 \pm 0.09^{+0.36}_{-0.32}$
$\pi^+ l \nu$	Ball/Zwicky ^[2]	<16	$3.57 \pm 0.13 \pm 0.09^{+0.59}_{-0.39}$
70 17	FNAL ^[3]	>16	$3.69 \pm 0.22 \pm 0.09^{+0.41}_{-0.34}$
	HPQCD ^[4]	>16	$3.86 \pm 0.23 \pm 0.10^{+0.66}_{-0.44}$

[1] PRD 83 (2011) 094031 [2] PRD 71 (2005) 014015 - LCSR

3 PRD 79 (2009) 054507 Lattice


[4] PRD 73 (2006) 074502 J QCD


Statistical

Experimental
Systematic

Theoretical

Calculation of $|V_{ub}|$ from different theory input for each q^2 range.

A Clean Process for the Measurement of f_B , $|V_{ub}|^2$

Helicity Suppression: Branching fraction proportional to m_{ℓ}^2

Deviation from Standard Model can indicate New Physics such as 2HDM(type2) or lepto-quark.

2HDM(type2)
$$\mathcal{B}(B^+ \to \ell^+ \nu_\ell)_{2HDM} = \mathcal{B}(B^+ \to \ell^+ \nu_\ell)_{SM} \times \left(1 - \tan^2 \beta \frac{m_B^2}{m_H^2}\right)^2$$
W. Hou, Phys. Rev. D. 48, 2342 (1993).

(Loose Tagging)

previous results of B→lnu

$$\mathcal{B}(B^+ \to e^+ \nu_e) < 9.8 \times 10^{-7}$$
 90%C.L. 253fb⁻¹

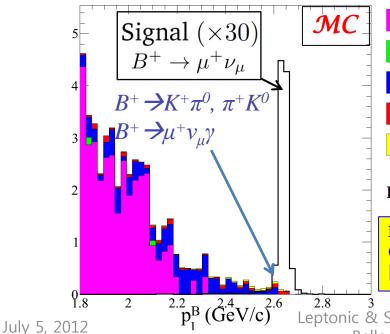
$$\mathcal{B}(B^+ \to \mu^+ \nu_\mu) < 1.0 \times 10^{-6}$$
 90%C.L. 426fb⁻¹

B. Aubert et al. (Babar Collaboration), arXiv:hep-ex/0903.1220 v2 (2009).

(Hadronic Tagging)

$$\mathcal{B}(B^+ \to e^+ \nu_e) < 5.2 \times 10^{-6}$$

 $\mathcal{B}(B^+ \to \mu^+ \nu_\mu) < 5.6 \times 10^{-6}$


90%C.L. 342fb⁻¹

B. Aubert et al. (Babar Collaboration), arXiv:hep-ex/0807.4187 v1 (2008).

N. Satoyama *et al.* (Belle Collaboration), arXiv:hep-ex/0611045 v2 (2007). $|B^+ ightarrow\ell^+ u_\ell$ $(\ell=e,\mu)$

Uses full $\Upsilon(4S)$ data $(711 \mathrm{fb}^{-1})$ /Hadronic Tagging/Blind Analysis

Strategy: Fit the sideband of \mathbf{p}_{ℓ}^{B} (2.0 ~ 2.5 GeV) to extrapolate the background into the signal region $(2.6 < \mathbf{p}_{\ell}^B < 2.7(\text{GeV}/c))$.

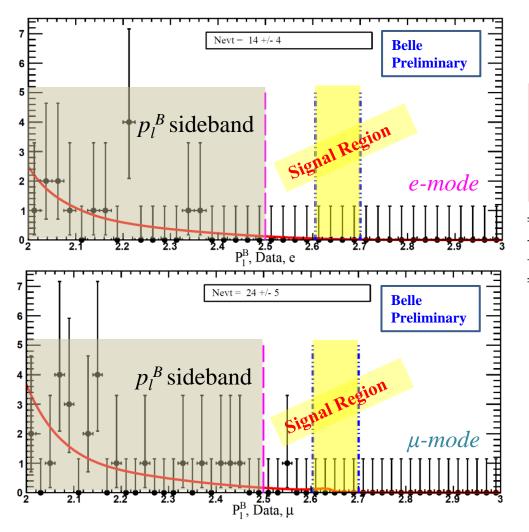
 $b \rightarrow c$

 $e^+e^- \rightarrow q\overline{q}$

 $b \rightarrow ulv$

 $b \rightarrow d,s$

 $B^+ \rightarrow \mu^+ \nu_{\mu} \gamma$


 P_I^B : the signal lepton's momentum in the signal-B rest frame.

 $\mathbf{p}_{\ell}^{B} = \text{signal lepton momentum in signal-}B \text{ rest frame}$

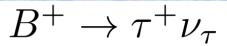
MC study – signal enhanced plot for muon mode (<<1 expected BG, signal for both e, mu)

Low BG, very clean signal distribution

Leptonic & Semileptonic Decays at Belle @ ICHEP 2012

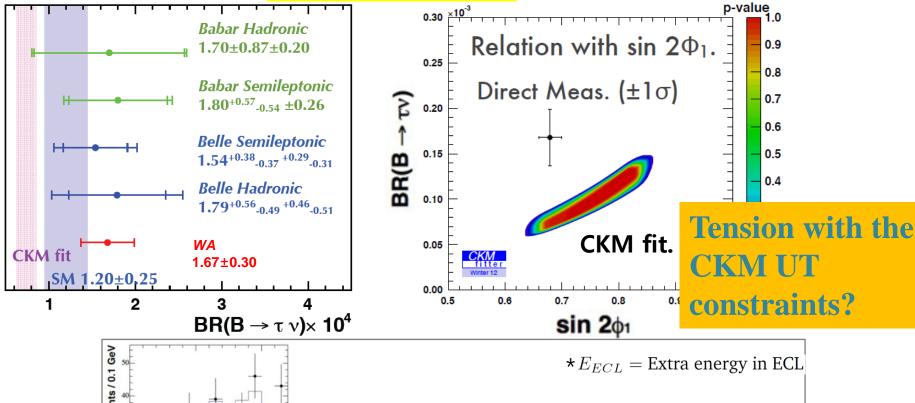
$$\overline{B^+ o \ell^+
u_\ell \ (\ell=e,\mu)}$$

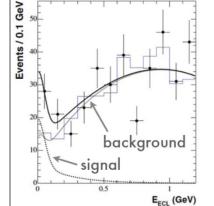
Data Unblind!


Upper Limit calculated by POLE (Feldman-Cousins method)

$$\mathcal{B}(B \to e\nu) < 3.5 \times 10^{-6} (90\% C.L.)$$

 $\mathcal{B}(B \to \mu\nu) < 2.5 \times 10^{-6} (90\% C.L.)$


$N_{ m expected~BG}$	$0.11^{+0.75}_{-0.06}$	$0.33^{+0.10}_{-0.08}$
ϵ_{signal}	$9.1 \pm 1.5 \times 10^{-4}$	$[1.15 \pm 0.18] \times 10^{-3}$
$N_{ m data\ observed}$	0	0


Most of the signal efficiency error from signal shape uncertainty estimated with $B^+ \to \bar{D}^0 \pi^+$ control samples

$$BF = \frac{Yield}{N(B\bar{B}) * \epsilon_{sig}}$$

Current results on $B \rightarrow \tau v$

$$N(B\bar{B}) = 449M$$

$$\mathcal{B} = [1.79^{+0.56}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})] \times 10^{-4}$$

PRL 97, 251802 (2006)

Past hadronic tag analysis from Belle with 1-D fit to E_{ECL}

 (3.5σ)

$$B^+ \to \tau^+ \nu_{\tau}$$

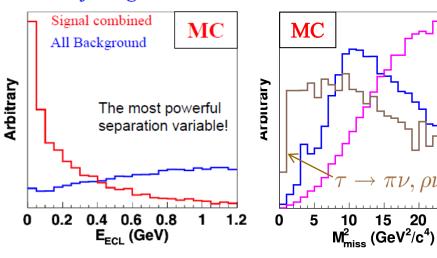
- Major differences from 2006 analysis
 - Reprocessing of full Belle data set (2011)
 - \rightarrow Improved detection efficiencies of low p_T tracks and neutral particles
 - Added 322M more B\overline{B} data in addition to previous 449M
 - New sophisticated hadronic tagging algorithm
 - → Based on neural net & Bayesian interpretation
 - \rightarrow More B/D decay modes included for the tag
 - Signal extraction by 2D fit to (E_{ECL}, M_{miss}^{2})
 - → Improved handling of peaking backgrounds

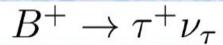
Definition of variables

$$M_{miss}^2 = (E_{CM} - E_{B_{tag}} - E_{B_{sig}})^2 - (P_{B_{tag}} - P_{B_{sig}})^2$$

E and $P_{B_{tag}}$: Energy and momentum of the tagged-B

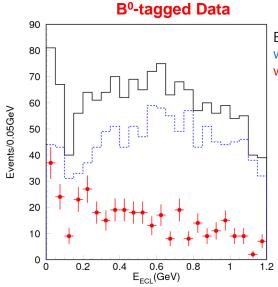
E and $P_{B_{sig}}$: Energy and momentum of signal side B particles


 $E_{ECL} = \text{Extra energy in ECL}$


aside from those contributed via tagged-B and signal-B constituents

τ -decays used

$$\begin{array}{c}
\tau^{-} \to e^{-} \bar{\nu_{e}} \nu_{\tau} \\
\tau^{-} \to \mu^{-} \bar{\nu_{\mu}} \nu_{\tau} \\
\tau^{-} \to \pi^{-} \nu_{\tau} \\
\tau^{-} \to \rho^{-} \nu_{\tau}
\end{array}$$



Using these variables for 2D histogram PDF fitting.

Improves the signal significance by about 20%

Use of 2-D fitting will reduce the sensitivity to peaking backgrounds in E_{ECL} .

Peaking background enhanced sample

B⁰-tagged total without reconstructed KL with reconstructed KL

25

30

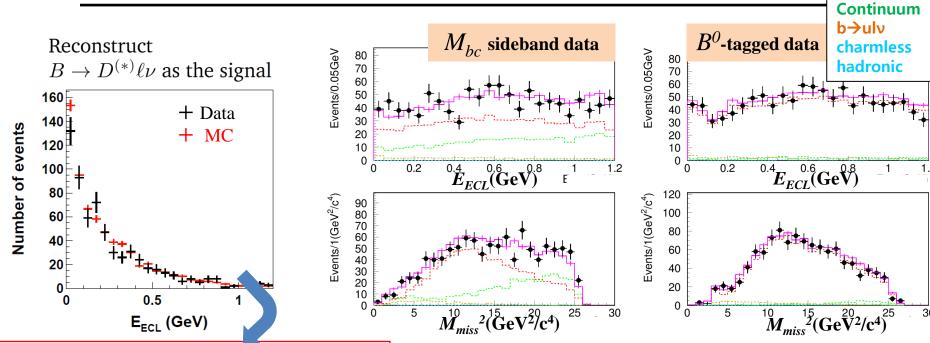
Background rejection using the K_L is introduced \rightarrow Effective to reduce the peaking background

Improves the signal significance by about 5%

Belle full data + improvement of analysis

Expected signal significance : 6.3σ for Br($B \rightarrow \tau \nu$)=1.65 × 10⁻⁴

Validation of Analysis Validated with Data

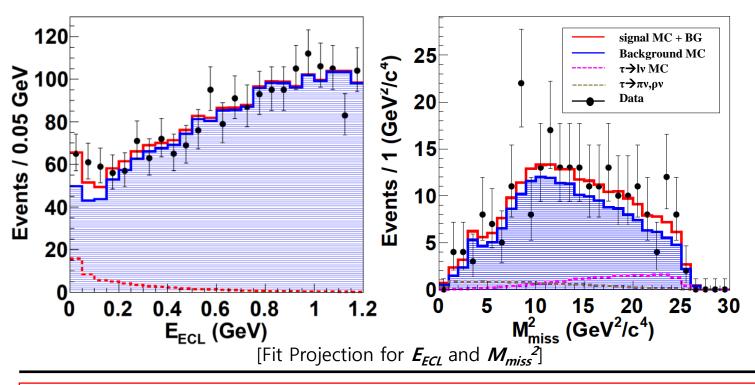

$$B^+ \to \tau^+ \nu_{\tau}$$

- 1. Sophisticated B tagging algorithm
- 2. Background rejection using K_L

Reconstruction efficiencies calibrated with Data

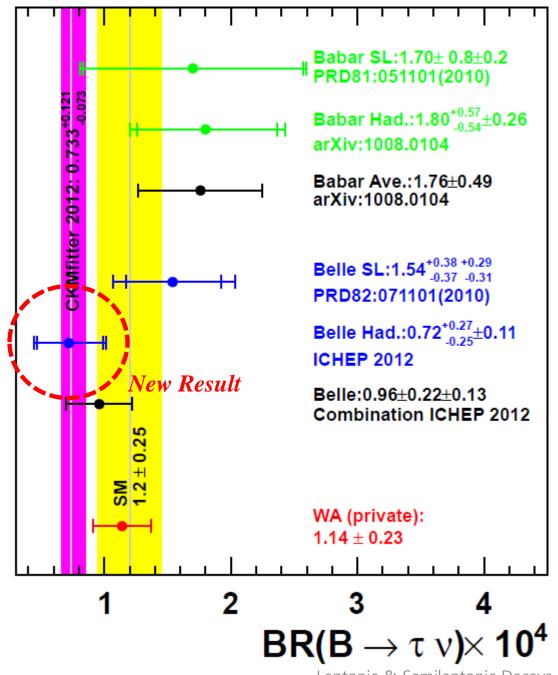
3. E_{ECL} and M_{miss}^2 signal/BG shape of MC —

Confirmed with Control Samples


 $\mathcal{B}(B^- \to D^{*0} \ell^- \bar{\nu}_{\ell}) = [5.60 \pm 0.22 (stat) \pm 0.28 (syst)]\%$ Consistent with the PDG world average: $(5.68 \pm 0.19)\%$

Data-MC consistency is also confirmed with E_{ECL} sideband and wrong charge combination events.

MC total B→charm


Unblind the Data! 2D ML fit to E_{ECL}-M_{miss}² Fit to Data Results.

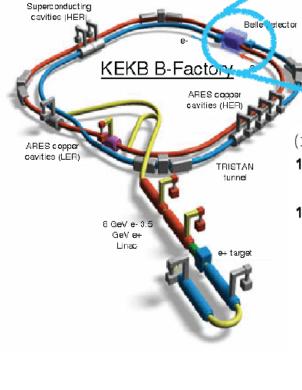
$$B^+ \to \tau^+ \nu_{\tau}$$

$$N_{signal} = 62.3^{+23.1}_{-21.7}$$

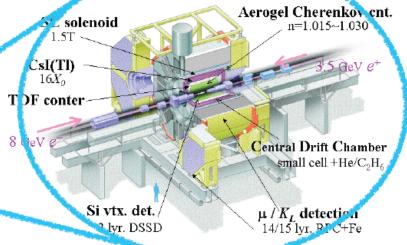
 $\mathcal{B}(B \to \tau \nu) = (0.72^{+0.27}_{-0.25} \text{(stat.)} \pm 0.11 \text{(syst.)}) \times 10^{-4}$

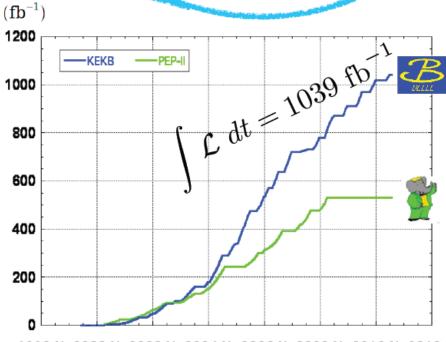
Previous hadronic tag result at Belle $\mathcal{B} = [1.79^{+0.56}_{-0.49}(\mathrm{stat})^{+0.46}_{-0.51}(\mathrm{syst})] \times 10^{-4} \longrightarrow 1.9\sigma$ difference

$$B^+ \to \tau^+ \nu_{\tau}$$


Summary

- With reprocessed data and improved hadronic tagging of *B*, Belle extends its sensitivity to semileptonic and leptonic decays.
- Many recent results on exclusive semileptonic decays (clean measurements of $B \rightarrow \pi l v$, $B \rightarrow \rho l v$, and related modes). $\frac{d\Gamma(B \rightarrow \pi l v)}{dq^2}$ is used to extract $|V_{ub}|$.
- New results for ICHEP2012 on purely leptonic modes: $B \rightarrow l \ v \ (l = e, \mu)$ and $B \rightarrow \tau \ v$
- $B \rightarrow \mu v$: The best constraint to date using hadronic tags.
- Un-blinded new $B \rightarrow \tau v$ result with hadronic tags. New result will move the world average much closer to the result from the CKM unitarity triangle fit.


BACK-UP SLIDES



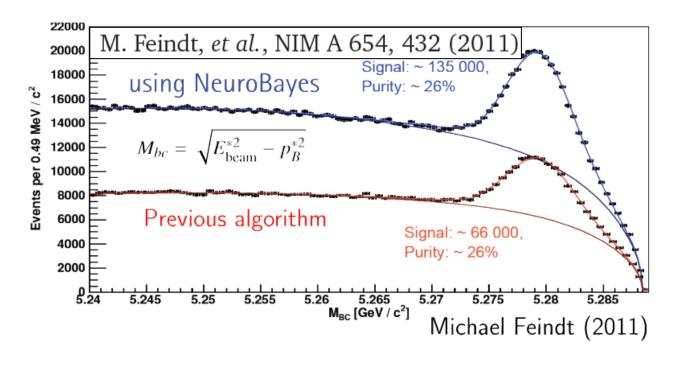
$\mathcal{L}_{\rm peak} = 21.1 \text{ nb}^{-1} \text{s}^{-1}$

Belle Detector

> 1 ab⁻¹ On resonance:

Y(5S): 121 fb⁻¹ Y(4S): 711 fb⁻¹ Y(3S): 3 fb⁻¹ Y(2S): 25 fb⁻¹ Y(1S): 6 fb⁻¹ **Off reson./scan:**

$\sim 100~{\rm fb}^{-1}$


$\sim 550 \text{ fb}^{-1}$ On resonance:

 Υ (4S): 433 fb⁻¹ Υ (3S): 30 fb⁻¹ Υ (2S): 14 fb⁻¹ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Hadronic Tagging Method

Same purity level, more signal BB

Signal Event Selection

$$B^+ o \ell^+
u_\ell \; (\ell=e,\mu)$$

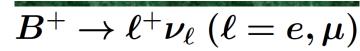
e: electron probability > 0.9 for e-mode study μ : muon probability $> 0.9, \;\; \chi^2 > 0$ for μ -mode study

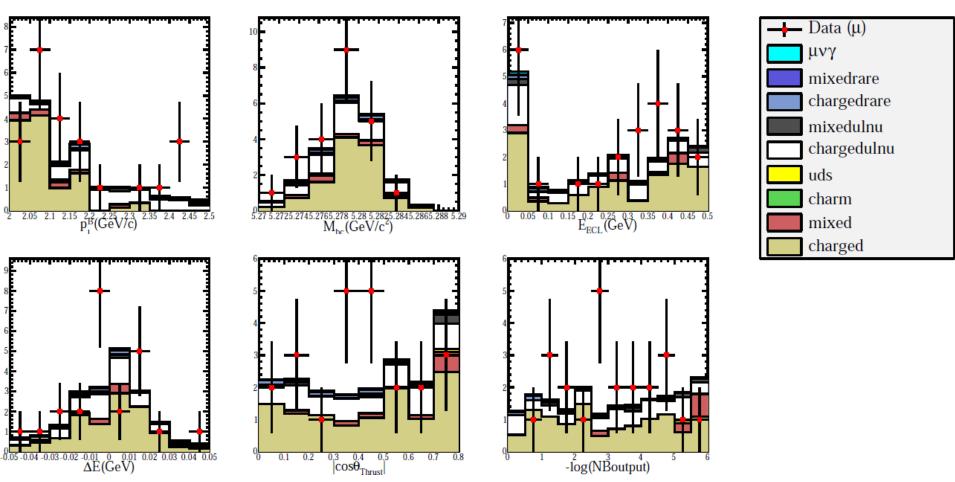
dr < 0.05cm, dz < 1.5cm

 $|\Delta E^{tag}| < 0.05 GeV$: quality of the tagged-B reconstruction ln(NBoutput) > -6: consistancy with $N(B\bar{B})^{tag}$ count condition

[Continuum Suppression]

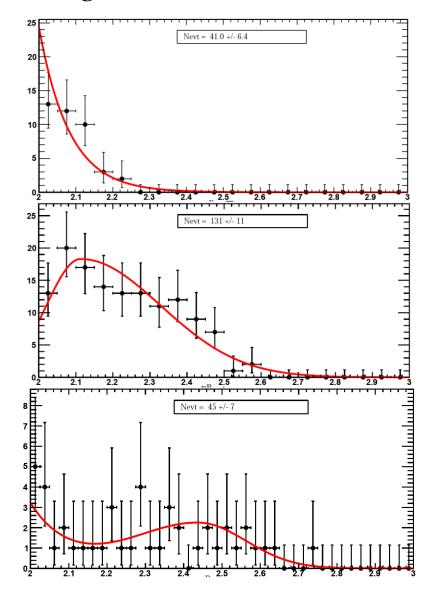
For e-mode search: $|\cos \theta_{thrust}| < 0.9$


For μ -mode search: $|\cos \theta_{thrust}| < 0.8$ to suppress fake π , K's


$$M_{\rm bc}^{tag} > 5.27~{\rm GeV} \hspace{5mm} E_{ECL} < 0.5~{\rm GeV} \label{eq:ecc}$$

 $2.6 < \mathbf{p}_{\ell}^{B} < 2.7 \; \mathrm{GeV}$: this variable is planned to be optimized. However for the MC study we assume the cut described.

BACK UP


Background MC Validation $B^+ o \ell^+ \overline{\nu_\ell} \ (\ell = e, \mu)$

comparison of data and MC at p_l^B sideband region: 2.0< p_l^B < 2.5 (GeV/c)

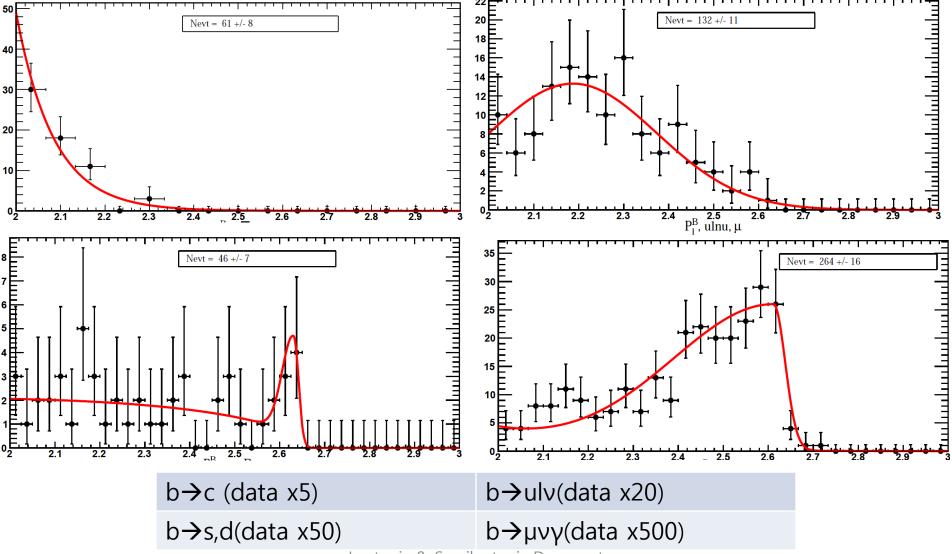
Background MC PDF Modeling

BACK UF

$$\overline{B^+ o \ell^+
u_\ell \ (\ell=e,\mu)}$$

Electron mode

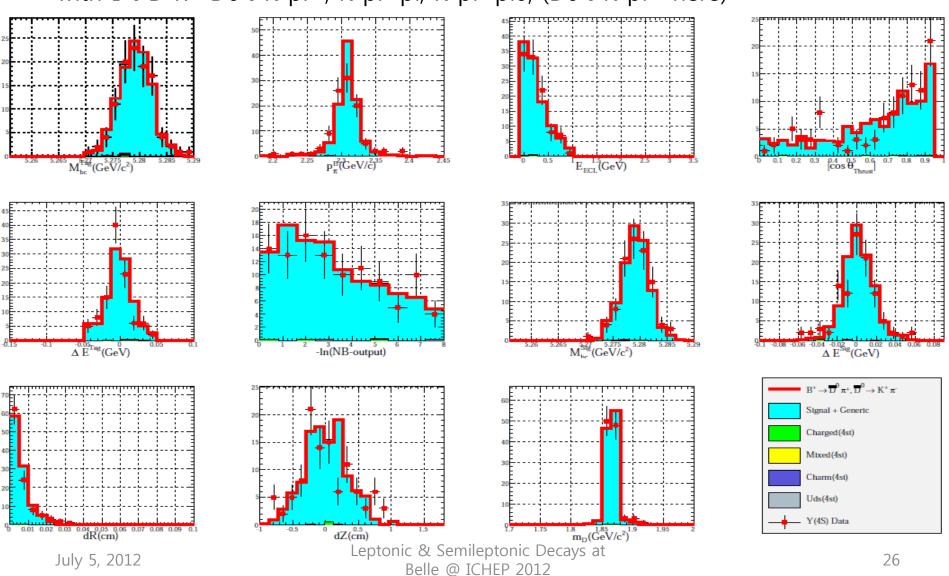
 $b \rightarrow c (data x5)$


b→ulv (data x20)

 $b \rightarrow s,d$ or leptonic (data x50)

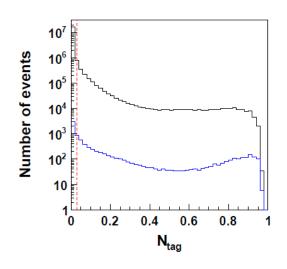
Background MC PDF Modeling

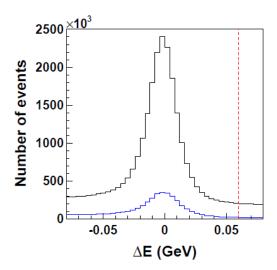
BACK UP $\overline{B^+
ightarrow \ell^+}
u_\ell \; (\ell=e,\mu)$

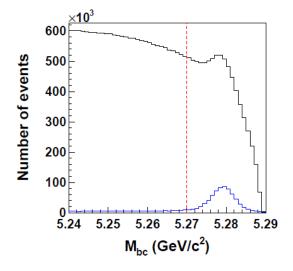

Muon mode

BACK UP

Signal Shape Correction with Data $B^+ o \ell^+ \overline{ u_\ell} \ (\ell=e,\mu)$


with $B \rightarrow D^0 l \nu$ $D0 \rightarrow K-pi+$, K-pi+pi, K-pi+pi0, $(D0 \rightarrow K-pi+ here)$




BACK UP

$$B^+ o au^+
u_ au$$

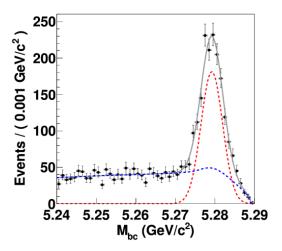
The best B_{tag} candidate selection: Largest N_{tag} , the Neural-network output of hadronic tagging.

Variables of the tagged-B

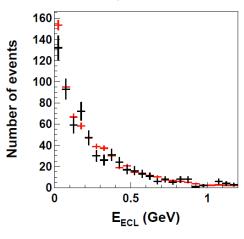
$$\Delta E = E_{taggedB} - E_{beam}$$

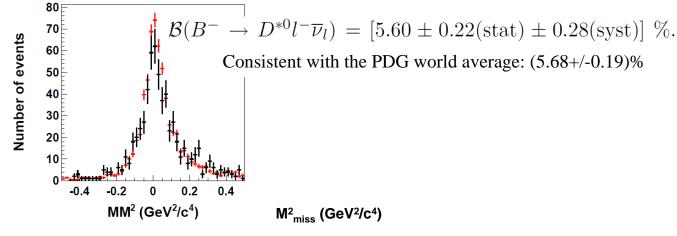
$$M_{bc} = \sqrt{E_{beam}^2 - |\vec{p_B^*}|^2}$$

BACK UP
$$B^+ \to \tau^+ \nu_\tau$$


$\boxed{\tau^- \to \mu^- \overline{\nu}_e \nu_\tau \mid \tau^- \to e^- \overline{\nu}_\mu \nu_\tau \mid \tau}$	$ au^- o \pi^- u_ au$	$ au^- o ho^- u_ au$		
One signal-side track in $ \Delta z < 3$ cm and $ \Delta r < 0.5$ cm				
No extra track in $ \Delta z < 1$	75 cm and \mid	Δr < 15 cm		
No signal-side π^0 One signal-side π^0				
	$ M_{\pi^-\pi^0} - M_{\rho^-} $			
		$< 0.15 \mathrm{GeV}$		
No K_L candidate reco	onstructed from	om KLM		
$-0.86 < \cos \theta_{\rm miss}^* < 0.95$				
$M_{\rm miss}^2 > 0.7 \; ({\rm GeV}/c^2)^2$				
$E_{\mathrm{ECL}} < 1.2 \; \mathrm{GeV}$				

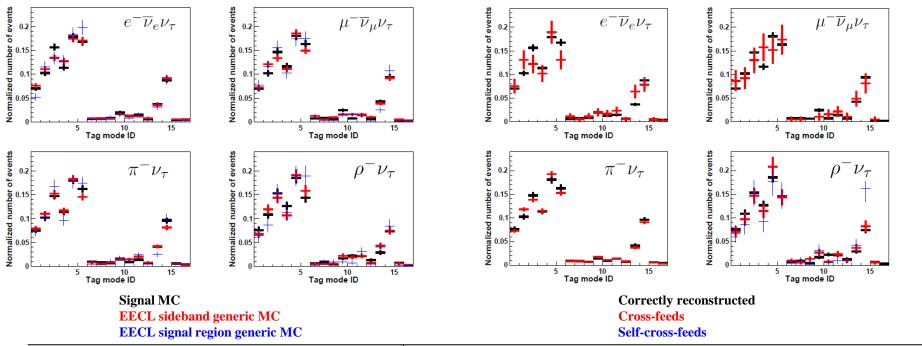
Selection criteria for the $B_{\rm sig}$ reconstruction.

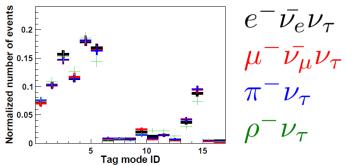

Tagging efficiency calibration Signal E_{ECL} , M^2_{miss} Shape validation


$$\begin{array}{c} \mathbf{B} \mathbf{A} \mathbf{C} \mathbf{K} \quad \mathbf{U} \mathbf{P} \\ R^+ \rightarrow \tau^+ \mathbf{U} \end{array}$$

- B tagging efficiency is calibrated with the E_{ECL} sideband data
 - Same event topology as signal.
 - MC expectations for both signal and background are corrected.

• Confirmed by reconstructing $B^- \rightarrow D^* lnu$, $D^* \rightarrow D^0 p^0$, $D^0 \rightarrow Kp$ as signal

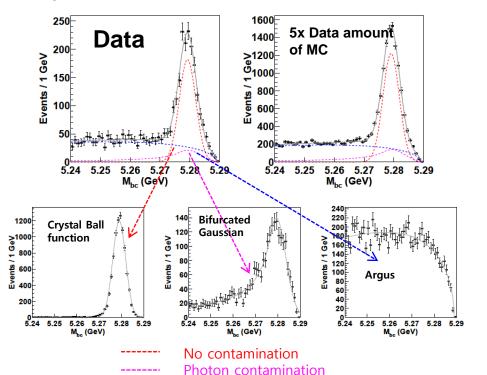



ID	0	1	2			3	4		5	
Mode	$D^{*0}\pi^{-}$	$D^{*0}\pi^{-}\pi^{0}$	$D^{*0}\pi^-\pi$	$-\pi^+$	D	$^0\pi^-$	$D^0\pi$	$-\pi^0$	$D^0\pi^-\pi$	$-\pi^+$
ID	6	7	8	9		1	0		11	
Mode	$D^{*0}D_s^{*-}$	$D^{*0}D_s^-$	$D^{0}D_{s}^{*-}$	D^0D)_ s	J/ψ	K^-	J/ψ	$K^-\pi^+\pi^-$	_
ID	12	13	14	Į.		1	5		16	
Mode	D^0K^-	$D^{+}\pi^{-}\pi^{-}$	$D^{*0}\pi^{-}\pi$	$-\pi^+\pi^0$	0	$J/\psi I$	$K^-\pi^0$	J/v	$\psi K_S \pi^-$	

BACK UI

$$B^+ \to \tau^+ \nu_{\tau}$$

Tagging efficiency calibration

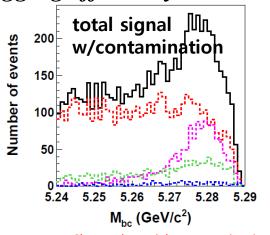


Comparison of the tagged-B mode ratio

- →Good MC/Data agreement
- →Common scale applicable

 E_{ECL} sideband region: $0.4 < E_{ECL} < 1.2 \text{GeV}$

E_{ECL} sideband region



Others

BACK UP

$$B^+ \to \tau^+ \nu_{\tau}$$

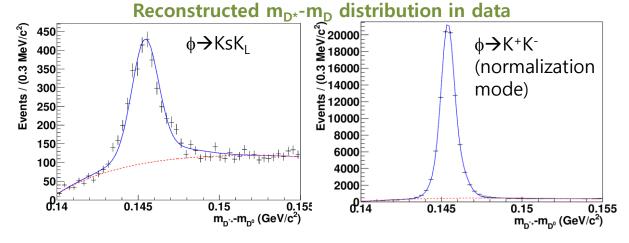
Tagging efficiency calibration

---- Charged particle contamination Single Photon contamination

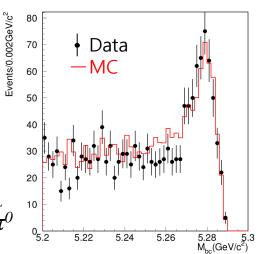
Two Photon contamination

>----- 2> Photon contamination

— Total Signal

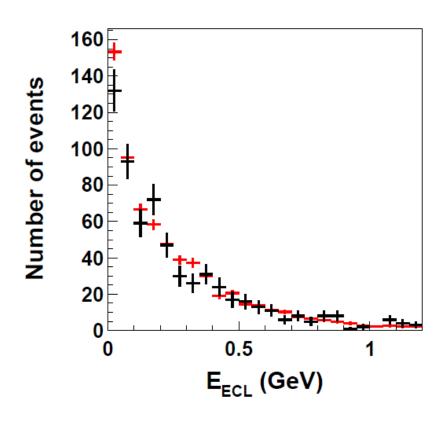

Group ID	Modes	Correction factor
A	$D^{*0}\pi^-, D^0\pi^-, D^0K^-$	1.07 ± 0.07
В	$D^{*0}\pi^-\pi^0$, $D^0\pi^-\pi^0$	0.79 ± 0.07
C	$D^{*0}\pi^-\pi^-\pi^+, D^0\pi^-\pi^-\pi^+, D^+\pi^-\pi^-, D^{*0}\pi^-\pi^-\pi^+\pi^0$	0.50 ± 0.04
D	$D^{*0}D_s^{*-}, D^{*0}D_s^{-}, D^0D_s^{*-}, D^0D_s^{-},$	0.96 ± 0.12
	$J/\psi K^-, J/\psi K^-\pi^+\pi^-, J/\psi K^-\pi^0, J/\psi K_S\pi^-$	

K_L efficiency calibration


$$B^+ \to au^+
u_ au$$

- It is essential to estimate the K_L reconstruction efficiency with KLM in <u>data</u>.
 - The dominant component is the low momentum K_L from D decays in the background of $B \rightarrow \tau v$.
- The K_L efficiency in data is calibrated using $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow \varphi K_s$, $\varphi \rightarrow K_s K_L$ decays

Typical K_L efficiency at 1GeV/c $\sim 11\%$



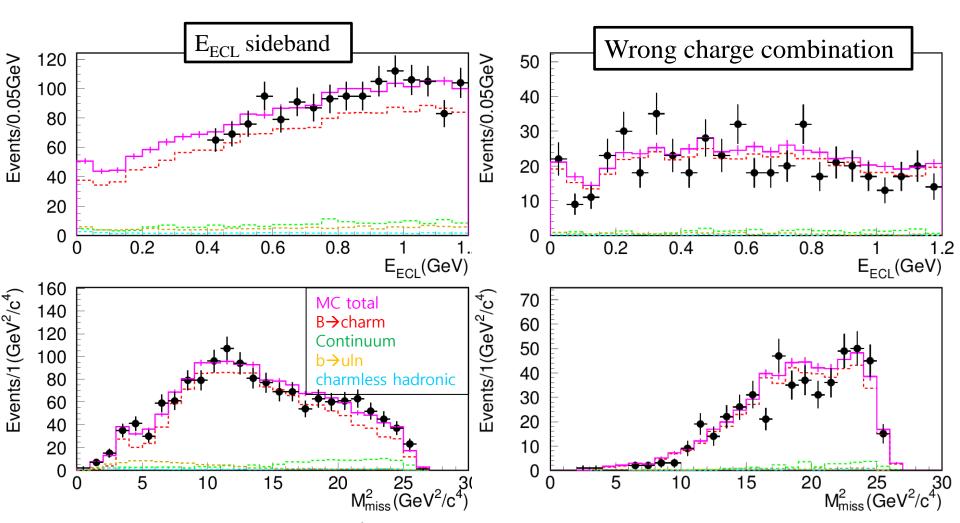
Estimated K_L reconstruction efficiency confirmed with the B decay including K_L $B^0 \rightarrow D^{*+}\pi^-$, $D^* \rightarrow D^0\pi^+$, $D^0 \rightarrow K_L\pi^0$

$B^+ \to \tau^+ \nu_{\tau}$

K_L rejection efficiency correction

Efficiency of K_L^0 Rejection

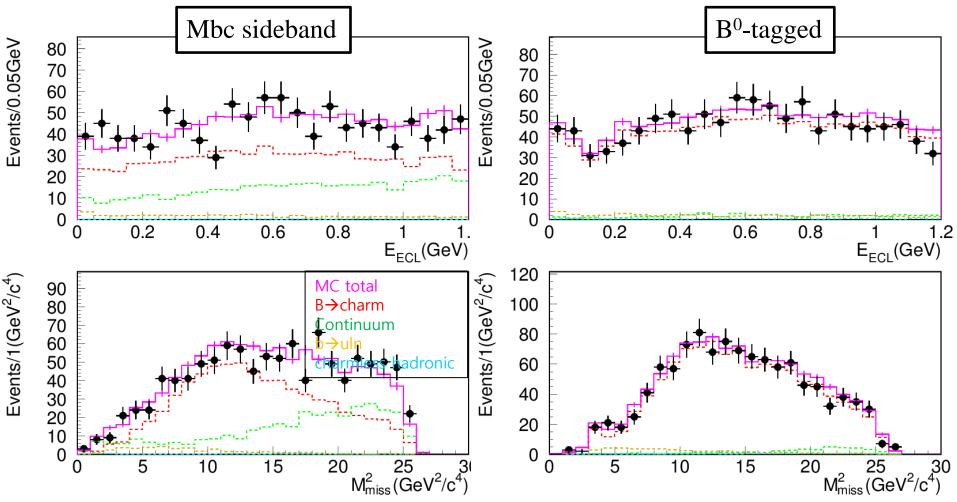
Data: 0.860 ± 0.013


MC: 0.824 ± 0.005

Data/MC: 1.04 ± 0.02

BACK UP

Background MC Validation



The MC E_{ECL} and $M_{miss}^{\ \ 2}$ distributions are confirmed by the BG control samples.

BACK UP

Background MC Validation

The MC E_{ECL} and M_{miss}^2 distributions are confirmed by the BG control samples.

$$B^+ \to \tau^+ \nu_{\tau}$$

Corrections for data/MC differences

- Hadronic Tag efficiency correction
- K_L^0 rejection efficiency correction
- Branching fraction of peaking background modes, event by event correction

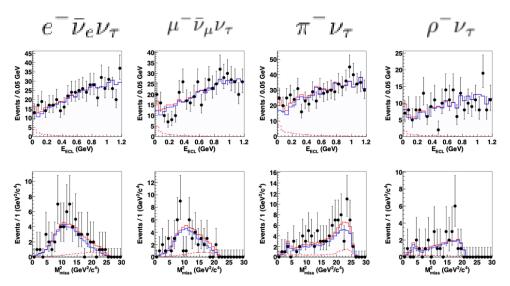
Systematic Uncertainties

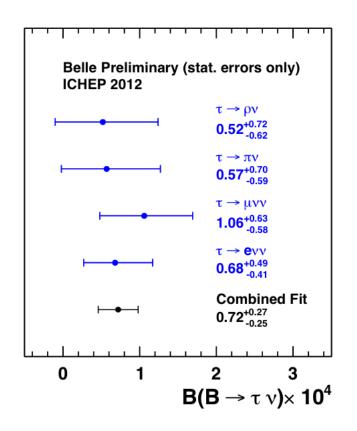
$$B$$
 A C K U P $B^+ \to au^+
u_ au$

source	error (%)
Signal Yield	11.2
$N_{B\overline{B}}$	1.3
Reconstruction efficiency	
MC statistics	0.4
Br. of τ	0.6
PID efficiency	1.0
π^0 efficiency	0.4
Tracking	0.3
K_L^0 veto	7.3
Tagging efficiency	8.5
Total	15.9

source	error
PDF Histogram MC Statistics	+5.6 -5.0
Signal $E_{\rm ECL}$ Shape	$^{+0.6}_{-2.4}$
PHOTOS radiative correction	$+0.0 \\ -0.6$
Peaking BG, generic B	± 1.3
Peaking BG, rare B	± 1.9
Peaking BG, $b \to u \ell \nu$	± 0.4
Efficiency ratio, MC stat	$^{+0.1}_{-0.2}$
τ branching fraction	$+0.5 \\ -0.0$
π^0 efficiency	± 0.3
PID efficiency	$^{+0.5}_{-0.6}$
K_L^0 veto efficiency	$^{+0.5}_{-2.2}$
Tagging Efficiency in BG	± 0.1
Total	$^{+6.2}_{-6.5}$

[Multiplicative uncertainties]

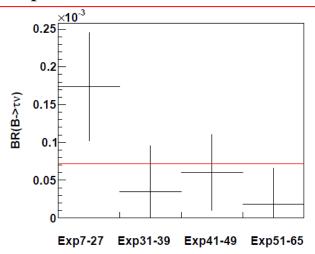

[Additive uncertainties]


Fit Consistency Check

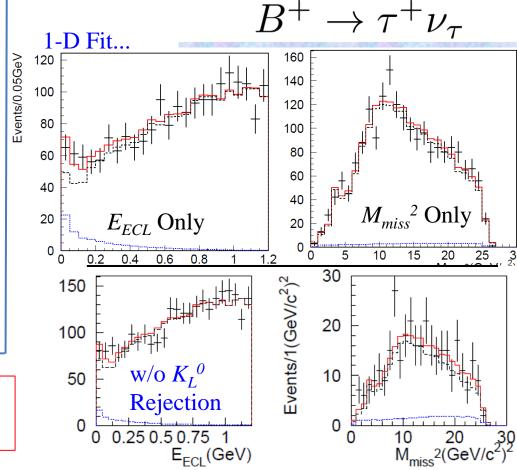
$$B^+ \to \tau^+ \nu_{\tau}$$

In the fit for signal yield extraction, ratio between τv components is fixed. Result of simultaneous fit floating each yield of τv components

Mode	Number of signal	Efficiency
$e^{-\overline{\nu}_e\nu_{\tau}}$	$15.5^{+11.2}_{-9.4}$	2.98×10^{-4}
$\mu^- \overline{\nu}_\mu \nu_\tau$	$25.6^{+15.1}_{-13.8}$	3.12×10^{-4}
$\pi^- \nu_{ au}$	$7.8^{+9.5}_{-7.9}$	1.76×10^{-4}
$\rho^- \nu_{ au}$	$13.6^{+18.7}_{-16.1}$	3.37×10^{-4}



Consistent results obtained.


BACK UF

Fit Consistency Check

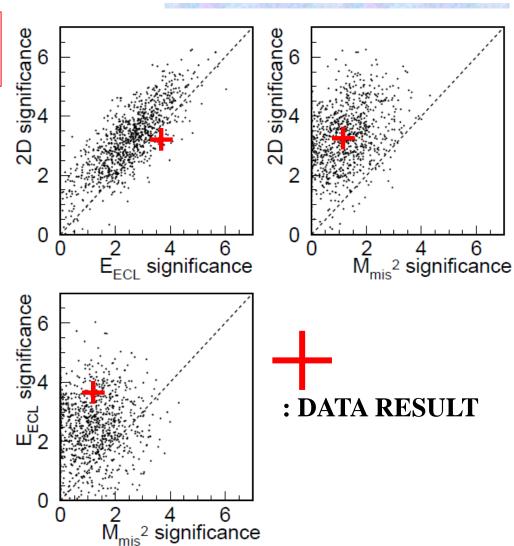
Comparison with different data range

Comparison with 1-D fit(E_{ECL} , M_{miss}^2) and no K_L^0 Rejection

Method/sample	Number of signal	Signal Eff.		Significance (stat. only)
Nominal 2D fit	$62.3^{+23.1}_{-21.7}$	1.12×10^{-3}	$0.72^{+0.27}_{-0.25}$	3.16
$E_{\rm ECL}$ only	$87.1_{-26.4}^{-27.5}$	ditto	$1.03^{+0.32}_{-0.30}$	3.57
$M_{\rm miss}^2$ only	$67.1_{-26.4} $ $67.9_{-58.8}^{+62.0}$	ditto	$0.78^{+0.72}_{-0.68}$	1.16
without K_L^0 veto	$67.9_{-58.8}^{+02.0}$ $65.3_{-25.0}^{+26.5}$	1.29×10^{-3}	$0.72_{-0.25}^{+0.27} \\ 1.03_{-0.30}^{+0.32} \\ 0.78_{-0.68}^{+0.72} \\ 0.65_{-0.25}^{+0.27}$	2.81

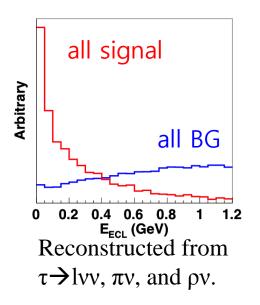
Fit Consistency Check

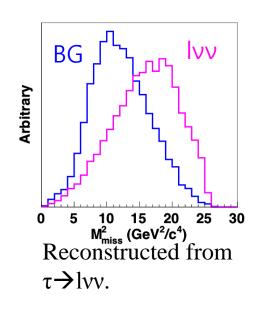
BACK UP

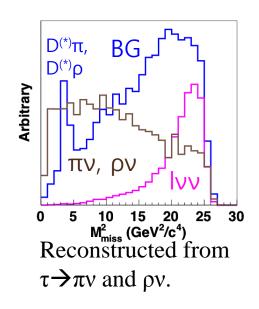

$$B^+ \to \tau^+ \nu_{\tau}$$

Comparison with 1-D fit(E_{ECL} , M_{miss}^2) and no K_L^0 Rejection

Toy MC pseudo experiments generated from the yields of signal and BGs obtained from fit to the data.


Performed for 2-D and 1-D fits


Correlations of Statistical Significance between 2-D Fit and 1-D Fits

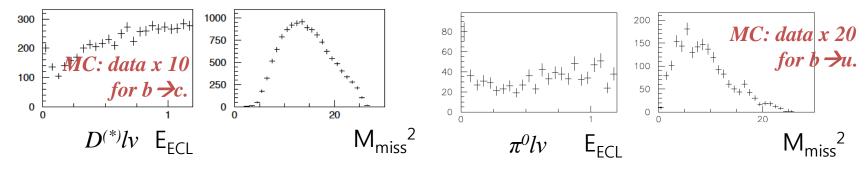


MC distribution of E_{ECL} and M_{miss}^{2}

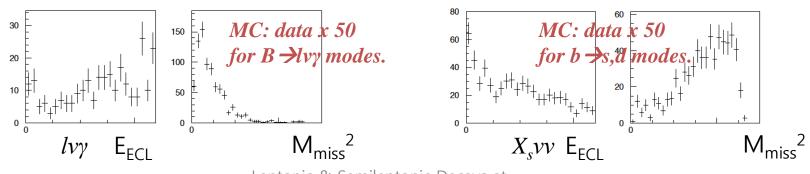
$$B^+ \to \tau^+ \nu_{\tau}$$

 E_{ECL}

Signal (red): four signal tau modes combined.


BG (blue): all expected BGs for four signal tau modes combined.

 M_{miss}^2 $\tau \rightarrow lvv$ signal (magenta): reconstructed as $\tau \rightarrow lvv$ (left), reconstructed as $\tau \rightarrow \pi v$ (right). $\tau \rightarrow \pi v$, ρv signal (brown): reconstructed as $\tau \rightarrow \pi v$ and $\tau \rightarrow \rho v$.


Peaking BG

$$B^+ \to \tau^+ \nu_{\tau}$$

- At least one of E_{ECL} and M_{miss}^2 distributions have difference from signal. Result is less sensitive to peaking backgrounds.
- If BR is known, error of BR and MC statistics in Syst.

If BR is not known, assume SM value in the nominal fit.
 SM value ±50% and MC statistics in Syst.

BACK

$Comparison\ with\ {\overset{\mathtt{PRL}\ 97,\,251802\ (2006)}{2006}}$

B^+	\rightarrow	$\tau^+ \nu_{ au}$

	PRL 97 (2006)	ICHEP 2012
Analysis	hadronic tag 1D fit to E_{ECL}	hadronic tag(new) 2D fit to (E_{ECL}, M_{miss}^2)
$N(BB) (x 10^6)$	(set A)	771
	449	(set A) 449 (set B) 332
Efficiency (x 10 ⁻⁴)	3.0	11.2
N(signal yield)	24. 1 ^{+7.6} _{-6.6}	54. 1 ^{+18.8} _{-17.4} 8. 6 ^{+14.0} _{-12.4}
$Br(B^+\rightarrow \tau^+ \nu) (\times 10^{-4})$	$1.79^{+0.56}_{-0.49}$	1. 08 ^{+0.37} _{-0.35} 0. 24 ^{+0.39} _{-0.34}
	^	$0.72^{+0.27}_{-0.25}$ 2.5σ

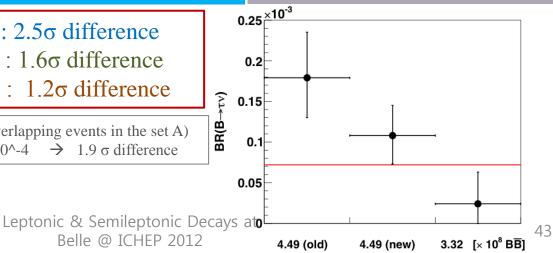
conservative comparison

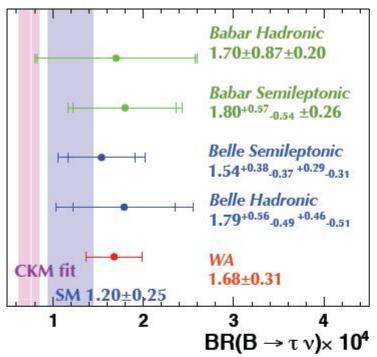
- Only with statistical error.
- Assuming all the signal candidates in the old analysis become signal candidates in the new analysis.

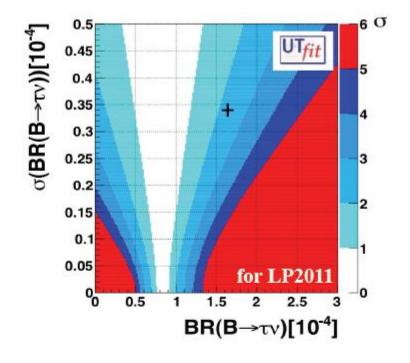
 1.6σ New analysis based on improved tag, loose event selection, and reprocessed data.

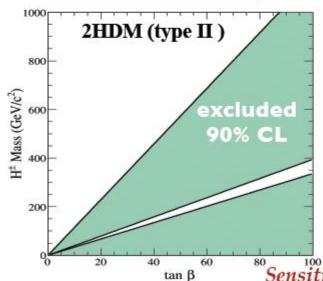
SET A: the data-set used in 2006

SET B: corresponds to the data-set not used in 2006


SET A': corresponds to the data-set used in 2006, but reproduced


All events used for the New Analysis


Old (set A) vs. New (set B) : 2.5σ difference New results. set A' vs. set B: 1.6σ difference Old (set A) vs. New (set A'): 1.2σ difference


*Old result (set A) vs. New (only for non-overlapping events in the set A) BF(non-overlapping events) = $(0.6 \pm 0.4) \times 10^{-4}$ \rightarrow 1.9 σ difference

Belle @ ICHEP 2012

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \mathcal{B}_{\rm SM} \times \left(1 - \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta\right)^2$$

W. Hou, PRD 48, 2342 (1993)

for this plot, we use

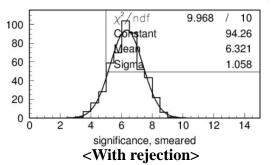
$$B_{\rm SM}({\rm B}^+\!\!\to\!\! au^+
u) = (1.20\pm0.25) \! imes \! 10^{-4}$$
 using ${\rm f_B\,(HPQCD),\,|V_{ub}|\,(HFAG)}$

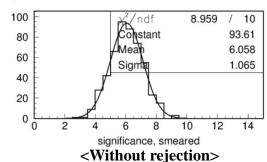
Note:

$$\mathcal{B}_{\rm SM} = 0.83 \pm 0.08$$
 (UTfit)

$$\mathcal{B}_{SM} = 0.733^{+0.121}_{-0.073}$$
 (CKMfitter)

Sensitivity to H⁺ is complementary to LHC direct searches

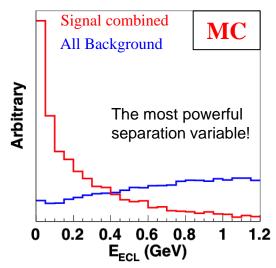

$\blacksquare K_L^0$ Rejection

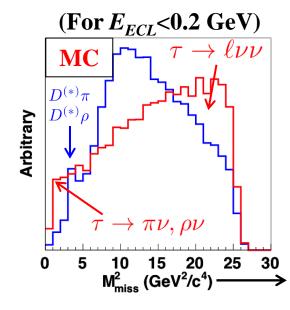

OLD P14.

 $B^+ \to \tau^+ \nu_{\tau}$

Toy Monte Carlo study with and without ${\cal K}_L^0$ Rejection

(Input
$$\mathcal{B}(B^+ \to \tau \nu) = 1.65 \times 10^{-4}$$
 for signal MC)





Considers... Statistical uncertainty, Systematic uncertainties for MC PDF statistics, K_L^0 Rejection uncertainty, and Peaking Background uncertainty

Expected Significance = 6.32(6.06) with(without) K_L^0 Rejection

■ The fitting variables

Using these variables for 2D histogram PDF fitting.

Use of 2-D fitting will reduce the sensitivity to peaking backgrounds in E_{ECL} .