Beyond MSSM Higgs @ CMS

Jim Olsen
Princeton University
(On behalf of the CMS Collaboration)

36th International Conference on High Energy Physics Melbourne, Australia July 6, 2012

SM Higgs Search: Summer 2012

You have seen the CMS + ATLAS seminar on July 4

CMS will present detailed results on the SM Higgs search tomorrow:

```
09:00 – SM Higgs decaying to taus – Josh Swanson
```

10:15 – SM Higgs decaying to ZZ (2l2v, 2l2q) – Francesco Pandolfi

11:00 – SM Higgs decaying to ZZ (4l) – Markus Klute

11:45 – SM Higgs decaying to WW (2l2v, 2l2q) – Emanuele di Marco

14:00 – SM Higgs decaying to b quarks – David Lopes Pegna

15:15 – SM Higgs decaying to photons – Sergei Ganjour

16:30 – Higgs combination and properties – Sara Bolognesi

There is now strong evidence for a Higgs-like sector, in this talk I will present CMS searches for potential Higgs bosons beyond the MSSM

Higgs in a SM with 4 Generations

- Reinterpret SM Higgs search in the context of 4th generation
- Large impact on production and decay rates
 - Gluon fusion enhanced up to ~ x 10
 - BFs modified significantly

Limits on SM4 Higgs

Model parameters

– LHC XS WG benchmark:

$$m_{d4}=m_{L4}=m_{
m V}=600~{
m GeV}$$
 $m_{u4}-m_{d4}=\left[1+rac{1}{5}\ln\left(rac{m_H}{115}
ight)
ight]\cdot 50~{
m GeV}$

Use existing SM search results @ 7 TeV

- gg fusion dominates, neglect
 VBF and VH production
- Channels contributing:
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow \tau \tau$
 - $H \rightarrow WW(2|2v)$
 - $H \to ZZ(4l, 2l2v, 2l2q, 2l2\tau)$

NMSSM: $a_1 \rightarrow \mu^+ \mu^-$

Add a scalar singlet to MSSM Higgs family

- 3 CP even (h₁, h₂, h₃) , 2 CP odd (a₁, a₂), and H[±]
- Out pops a potentially light boson

• $a_1 = a_{\text{mssm}} \cdot \cos \theta_A + a_{\text{S}} \cdot \sin \theta_A$

At CMS: search above and below the Upsilon family

- Larger production rate relative to Tevatron
- Extended search relative to BaBar $(m_a > m_{Y(3S)})$

Muon Trigger and Selection

Trigger (prescaled)

- OS dimuon, $p_T^{\mu} > 3.5$ GeV
- $-p_T^{\mu\mu} > 6.0 \text{ GeV}$
- $-5.5 < m_{\mu\mu} < 14 \text{ GeV}$
- Prompt impact parameter

Number of vertices

Muon selection

- $-p_T^{\mu} > 5.5 \text{ GeV}; |\eta| < 2.4$
- $> 10 \text{ hits (> 0 pixel)}; \chi^2/\text{ndof} < 1.8$
- Isolation in a cone of $\Delta R = 0.3$:

•
$$\frac{p_T(\text{chg}) + E_T(\text{ntrl})}{p_T^{\mu}} < 0.2$$

Search for $a_1 \rightarrow \mu^+ \mu^-$

Signal extraction

- Binned ML fit over 5.5 14 GeV
- Mass scan in 30 MeV steps

Background model

- QCD: 1st-order polynomial
- Y(NS): double crystal ball
 - 1S floating; 2S & 3S tied to 1S

Signal model

- Single Gaussian
- Mean fixed to center of step
- Width fixed to detector resolution
 - Range 1: 50 120 MeV
 - Range 2: 90 190 MeV

Exclusion Limits: $a_1 \rightarrow \mu^+ \mu^-$

Cross Section x BF Upper Limits

No significant signal observed in 1.3fb⁻¹ @ 7 TeV, exclusion limits set at the level of 2 – 6 pb for σ x B

BaBar searches in Y(3s) decays (See talk by Y. Kolomensky later in this session)

Upper limit on $\sigma(pp \rightarrow a \rightarrow \mu\mu)$ [pb]

Doubly Charged Higgs Φ**

Minimal Type II See-Saw Models

- Prediction of additional scalar field that is a triplet under SU(2)₁
- New Higgs-like particles: Φ^{++} , Φ^{+} , Φ^{0}
- If observed, would open a new window on neutrino physics accessible at the LHC

CMS search for Φ++ and Φ+

- Produced in pairs, or in association with singly charged Higgs (first time)
- Unique experimental signature
- Search in 7 TeV data using same-sign lepton combinations of all flavors

 Φ^{++} and Φ^{+} are assumed to be degenerate in mass

Φ⁺⁺ Search Strategy (I)

Search for 3 or 4 charged leptons

- All flavor combinations (1 or 2 τ_h)
- SM bkgs mostly from fake leptons
- $-\Phi^{++} \rightarrow W^+W^+$ assumed to be negligible

Lepton selection

- Double lepton trigger (ε = 99.5%)
 - 17/8 GeV for ee, eμ; varying for μμ
- $-p_T^e > 15 \text{ GeV}, p_T^{\mu} > 5 \text{ GeV}$
- Hadronic tau reconstruction
 - Particle flow based algorithm
 - "hadrons plus strips" to combine π^{\pm} , π^0
 - $p_T^{\tau} > 15 \text{ GeV}$
- All leptons required to be isolated

Φ⁺⁺ Search Strategy (II)

Final analysis optimization

- Scalar sum of lepton p_T
- Z mass veto
- $-\Phi^{++}$ signal mass window
- Selections are optimized as a function of m_{Φ} separately for $\ell\ell$, $\ell\tau_h$, and $\tau_h\tau_h$ events, where ℓ = e, μ

Background estimation

- From data sidebands in m_{Φ}
- Obtained from pre-selection sample
- Extrapolate to signal region with MC

Dominant systematics

- Theory uncertainty
- Background extrapolation (stat)

Limits on Φ^{++} Production

Summary

- LHC continues its outstanding performance
 - On track to deliver > promised samples in 2012
 - Run has been extended to February 2013
- Evidence for an excess near 125 GeV in the context of the search for the SM Higgs
 - See July 7 sessions for details
- Active CMS searches for beyond MSSM Higgs
 - No evidence for any excess above backgrounds
 - Strong constraints on SM4, light pseudoscalar (a₁),
 and doubly charged Higgs boson hypotheses

CMS Apparatus

LHC and CMS Performance (2011)

- peak lumi ~ 3.5x10⁻³³cm⁻²s⁻¹
- > 5/fb recorded @ > 90% eff
- mean pile-up ~10, not a problem

LHC in 2012

Higher energy (4 TeV per beam) and higher luminosity (> 7e33)

Phenomenal performance

- Record luminosity (> 5e33)
 achieved shortly after startup
- 1fb⁻¹ delivered in a few weeks
- Sustained rate of > 1.5fb⁻¹/wk
- Total delivered exceeds 6 fb⁻¹

Challenging conditions

- Average pile-up 10-30
- Triggers are working!
 - Extensive development over the break
 - In many cases, rates are less than we expected (or feared)
- CMS is in great shape
 - > 90% data-taking efficiency, as usual