ATLAS results from $\mathrm{Pb}-\mathrm{Pb}$ collisions at 2.76 TeV

On behalf of ATLAS Collaboration
Tomasz Bold
UC Irvine, AGH-UST Krakow

PLHC 2011 , Perugia

The ATLAS Detector

Recorded luminosity

\square Delivered: $10 \mu \mathrm{~b}^{-1}$
\square Recorded: $9 \mu b^{-1}$
$\square 8 \mu b^{-1}$ with solenoid on
\square Only minimum-bias trigger used:
\square Zero Degree Calorimeter, MBTS
\square No high p_{T} triggers used to select the events

Centrality

4
\square Measured $\mathrm{FCal} \sum \mathrm{E}_{\mathrm{T}}(3.2<|\eta|<4.9)$ and compared to Glauber MC \& pp data \rightarrow scale of centrality errors - 2\%
\square Whole range split into percentiles of $F C a l \sum E_{T}$ distribution

from centrality bin

Charged particles yields and spectra

Total multiplicities
 low p_{T}, mid-centrality

6

PLHC 2011, ATLAS results from $\mathrm{Pb}-\mathrm{Pb}$ collisions at 2.76 TeV

Spectrum

\square Tracks (Pixel+SCT)
$|\eta|<2.5$
$\square \mathrm{R}_{\mathrm{AA}}$ modification better seen via:

$R_{C P}=\frac{N_{\text {coll }}^{C}}{N_{\text {coll }}^{P}} \frac{N_{\text {ert }}^{P}}{N_{\text {evt }}^{C}} \frac{d^{2} N^{C} / d \eta d p_{T}}{d^{2} N^{P} / d \eta d p_{T}}$
Minima around 7 GeV , no η dependence.
Weak η dependence.
Agrees with Alice.

Azimuthal event shapes

\square Elliptic flow results from pressure gradient along the reaction plane
\square Higher order flows possibly sensitive
Reaction Plane to viscous hydrodynamics in QGP
\square Alternative explanations are jetmedium interactions i.e. "mach cone"

Flow

Event Plane method

$\square \mathrm{dN} / \mathrm{d}\left(\phi-\Phi_{\mathrm{RP}}\right)=\mathrm{N}_{0}\left(1+2 \mathrm{v}_{1} \cos \left(\phi-\Phi_{\mathrm{RP}}\right)\right.$
$+2 v_{2} \cos \left(2\left(\phi-\Phi_{\mathrm{RP}}\right)\right)+2 \mathrm{v}_{3} \cos \left(3\left(\phi-\Phi_{\mathrm{RP}}\right)+. . \mathrm{V}_{4} . . \mathrm{V}_{5} . . \mathrm{V}_{6}\right.$
$\square \Phi_{\text {RP }}$ not measured \rightarrow estimate $\Psi_{\text {EP }}$ using FCal , independently for A and C sides of ATLAS \rightarrow tracks from opposite side used (η-gap to avoid flow enhancement by di-jets \& resonances decays)
$\square \rightarrow$ new input for hydro models

PLHC 2011, ATLAS results from $\mathrm{Pb}-\mathrm{Pb}$ collisions at 2.76 TeV

Flow

2-particle correlation

10
$\square \mathrm{C}(\Delta \phi, \Delta \eta)=$
$\mathrm{N}_{\text {same }}(\Delta \phi, \Delta \eta) / \mathrm{N}_{\text {mixed }}(\Delta \phi, \Delta \eta)$
\square Projected/sliced into η and DFT
\square Range of p_{T} studied

\square Results agree very well with Event Plane methoa.

Hard probes

Jets

Assymetry \& inclusive spectra
12

- Measured quantity jet asymmetry $A_{j}=\frac{E_{T}^{1}-E_{T}^{2}}{E_{T}^{1}+E_{T}^{2}}$
- Observed enhancement ${ }^{L_{T}^{T}}$ of suppression with centrality

A_{J}
A
A_{J}

\square Inclusive spectra
$\square R_{\text {CP }}$ vs E_{T} /in centrality bins \rightarrow no dependence
$\square R_{C P}$ vs Centrality dependence / in E_{T} bins \rightarrow moderate dependence

PLHC 2011, ATLAS results from $\mathrm{Pb}-\mathrm{Pb}$ collisions at 2.76 TeV

Jets

Fragmentation functions

13
\square Jet fragmentation functions
\square Longitudinal
$z=\frac{p_{T}^{\text {part }}}{E_{T}^{\text {part }}} \cos \Delta R$
\square Transverse
$j_{T}=p_{T}^{\text {part }} \sin \Delta R$

\square No substantial change between central and peripheral despite large change in the yield

J / ψ suppression

\square And confirmed by ATLAS in the first study:
$\mathrm{J} / \psi \rightarrow \mu \mu$
${ }^{-} \mathrm{p}_{\mathrm{T} \mu}>3 \mathrm{GeV},\left|\eta_{\mu}\right|<2.5$
\square Plan to look into prompt/non-prompt

W and Z bosons

\square No conclusion can be drawn about Z suppression
$\square W R_{\text {CP }}$ consistent with no-suppression

\square Measured $\mathrm{R}_{\mathrm{W} / \mathrm{Z}}=10.5 \pm 2.2$
\square No suppression should be seen for W and Z
$\square Z \rightarrow \mu \mu$ used to test this hypothesis
$\square \mathrm{W} \rightarrow \mu \nu$

- $E_{t}^{\text {miss }}$ impossible, use fit to MC templates

1-centrality

Summary

\square ATLAS advances HI program:
\square Measured multiplicities of charged particles \rightarrow comparable with other LHC experiments, raise by factor ~ 2 w.r.t. the RHIC
$\square R_{C P}$ for charged particles has minimum around 7 GeV and raises for higher p_{T}
\square Elliptic flow and higher modes studied in details \rightarrow harmonics up to 6 measurable, challenges jet-medium explanation
\square Jet fragmentation functions unmodified going from central to peripheral
$\square \mathrm{J} / \mathrm{psi}$ at mid- η suppressed, no W suppression, to low stat. for Z to conclude
\square More analyses ongoing

Backup

17

Jets \& N_{ch}

PLHC 2011, ATLAS results from $\mathrm{Pb}-\mathrm{Pb}$ collisions at 2.76 TeV

Narrow (R-0.2) jets

PLHC 2011, ATLAS results from Pb-Pb collisions at 2.76 TeV

Flows

\square Hydro: $\mathrm{V}_{\mathrm{n}}{ }^{\mathrm{n}} \sim$
(expansion velocity) ${ }^{n}$

EP and 2P methods comparison
\square Note dominant v_{3} over v_{2} at high centralities

Flow

High pt recovers second peak from di-jet

Tracklets details

\square Fake tracklets counts estimated from MC

\square In "Method 2" used also trick with flipped pixel hits

PLHC 2011, ATLAS results trom Pb-Pb collisions at 2.76 TeV

