From the STAR CMOS Pixel Sensors to an eRHIC Sensor : A Path guided by Synergies

M. Winter (PICSEL team of IPHC-Strasbourg) - coll. with IRFU-Saclay -

Contents

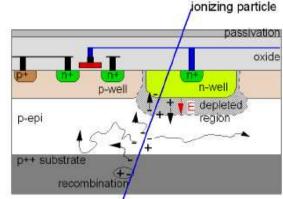
- Basic features of CMOS sensors
 - * attractiveness

* limitations \Rightarrow R&D

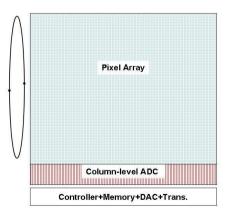
- Status of sensor realisation : STAR-PXL
 - ★ sensor architecture
 ★ state-of-the-art
- Projection in the coming 4 years
 - * ALICE, AIDA, CBM * spin-offs : eRHIC, BES-3, ...
- Summary

Attractive Aspects of CMOS Pixel Sensors

- Thin :
 - $st \leq$ 20 μm thick sensitive volume
 - $\,st\,\sim$ 10 μm thick integrated circuitry
 - * 50 μm thinning of large CPS has good yield (in CA-USA !)
 - * stitching (& redistribution layer) alleviates material budget for steering & read-out
 - * CPS may be flexible enough to equip curved surfaces (beam pipes ...) \triangleright \triangleright \triangleright
- Granular :


* 20 μm pitch \Rightarrow 3.5 - 1.5 μm with 1 - 4 bit charge encoding

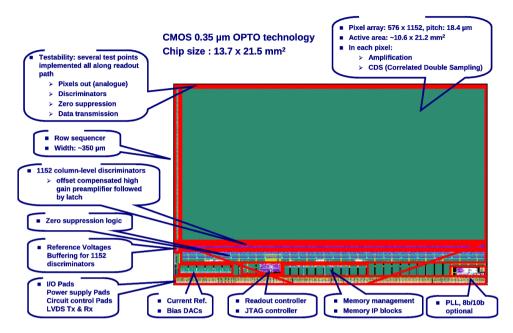
• Low power (despite high granularity) :


* use rolling-shutter read-out \Rightarrow full sensitive area dissipates \simeq 1 row $\triangleright \triangleright \triangleright$

- Room temperature operation (despite signal smallness)
- Low cost :

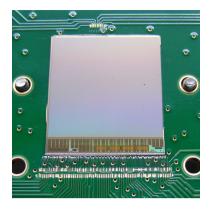
* STAR-PXL (1500 cm²) \Rightarrow 400 sensors for \sim 150 keuros (0.35 μm process)

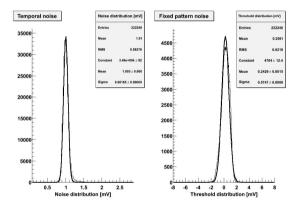
Where are the Most Limiting Factors ?

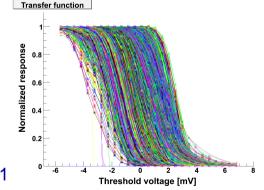

- Radiation tolerance : (see talk by M. Deveaux)
 - * Non-Ionising : depends on pitch, T, epitaxy resistivity
 - \Rightarrow at present in the range 10¹²–10¹³ n_{eq}/cm² at T_{room}
 - * Ionising : presumably mainly limited by feature size, less by T and integration time
 - \Rightarrow at present < 1 MRad at T_{room} (due to in-pixel circuitry)
- Read-out speed :
 - * consequence of pixel size (granularity) and rolling shutter (power saving) read-out
 - * could be as high as for Hybrid pixels, at the expense of power consumption and granularity
- $\triangleright \triangleright \triangleright$ Major goals of present R&D :
 - * improve the radiation tolerance to several $10^{13} n_{eq}/cm^2$ and several MRad at T_{room}
 - st achieve an integration time close to 10 μs
 - * accompanied by ultra-light system integration

Overview of Sensor Organisation

• Sensor organisation :

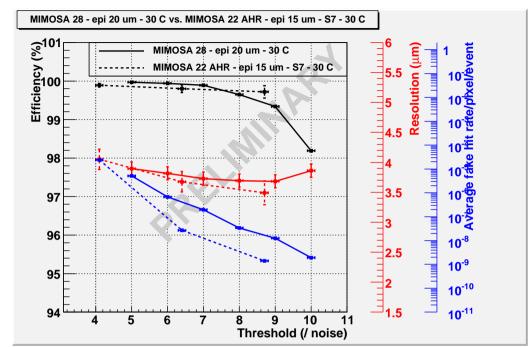

- * functionnalities inside each pixel :

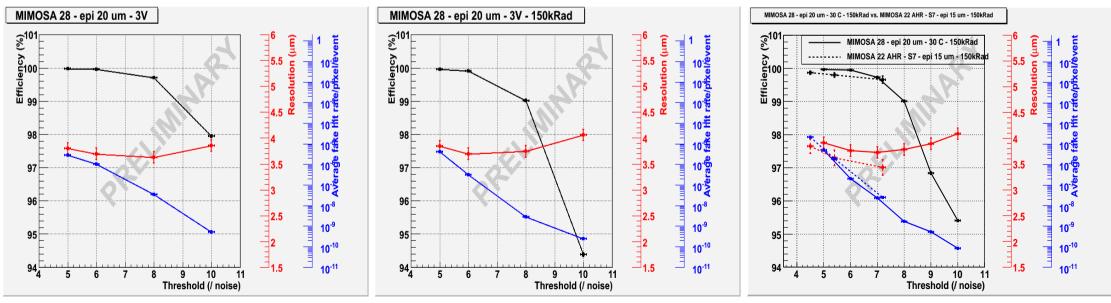

 - ---- conversion of charge in electrical signal (voltage)
 - ---- average noise (pedestal) subtraction (cDS)
- * functionnalities at periphery of pixel array :
 - ---- signal discrimination at end of each column
 - ---- discriminator output encoding and sparsification
 - $-\infty$ data transmission logic \rightarrow outside world
 - --- sequencers, JTAG, DAC, ...
- State-of-the art sensor : MIMOSA-26
 - * Orginally developped for the EUDET (EU-FP6) BT
 - * Numerous spin-offs (besides EUDET-BT copies) \Rightarrow expertise expands
 - --- CBM-MVD demonstrator : 16 sensors (see talk of T. Tischler)
 - ---> Hadrontherapy : FIRST expt (8 sensors)
 - \multimap Proton imaging and dosimetry (ocontherapy) : \sim 10 sensors
 - NA63 expt (positron prod. in crystal) : 8 sensors
 - PLUME double-sided ladder : 12 sensors (see talk of J. Baudot)
 - $-\infty$ AIDA (EU-FP7) alignment device : \geq 6 PLUME ladders \equiv 72 sensors



STAR-PXL Detector : MIMOSA-28/ULTIMATE

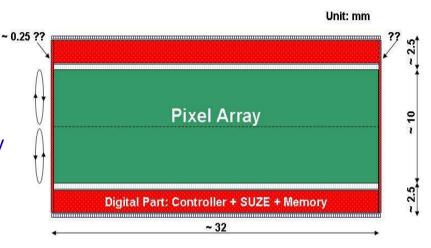
- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - st 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - st end-of-column discrimination and binary charge encoding, followed by arnothing
 - * active area: 960 columns of 928 pixels ($19.9 \times 19.2 \text{ mm}^2$)
 - st pitch: 20.7 $\mu m \rightarrowtail \sim$ 0.9 million pixels
 - \hookrightarrow charge sharing $\Rightarrow \sigma_{sp} \gtrsim$ 3.5 μm expected (M22-AHR beam tests)
 - * $t_{r.o.} \lesssim 200 \ \mu s$ (~ 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - * 2 outputs at 160 MHz
 - $* \lesssim$ 150 mW/cm² power consumption
- DDD Tests under way since early April : not yet completed
 - * N \leq 15 e⁻ ENC at 30-35^oC (as MIMOSA-22AHR)
 - * CCE (55 Fe) similar to MIMOSA-22AHR
 - $-\infty$ Ionising rad. tolerance validated (150 kRad at 30 $^{\circ}$ C)
 - $-\infty$ NI rad. tolerance validation (3.10¹² n_{eq}/cm² at 30°C) scheduled in Autumn 2011





Observed M.I.P. Detection Performances of ULTIMATE

- Beam tests at CERN-SPS with O(10 2) GeV " π^- beam" :
 - * 1 week of data taking : June 27 July 4
 - * BT made of 6 ULTIMATE sensors (20 μm thick epi):
 - $-\infty$ 2 pairs (\equiv arms) of reference sensors
 - ---- separated by 1 pair of DUTs
 - * test variables (preliminary results) :
 - $-\infty$ operating temperature : 20 & 30°C
 - —o ionising radiation dose : 0 & 150 kRad
 - \rightarrow steering voltage : 3.3 & 3.0 V

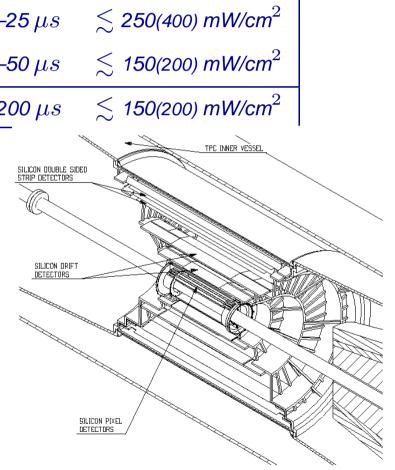


From ULTIMATE to MISTRAL

- **MISTRAL** \equiv **MI**MOSA **S**ensor for the inner **TR**acker of **AL**ICE \triangleright ALICE-ITS upgrade pixel option
- Derived from ULTIMATE (STAR PXL) :
 - ★ in-pixel pre-amp + cDS
 - * column parallel read-out (\equiv rolling shutter)
 - * each column ended with discri. \triangleright binary charge encoding
 - * zero-suppression & output buffers integrated at chip periphery
 - * JTAG programmable
 - st thinned to 50 μm

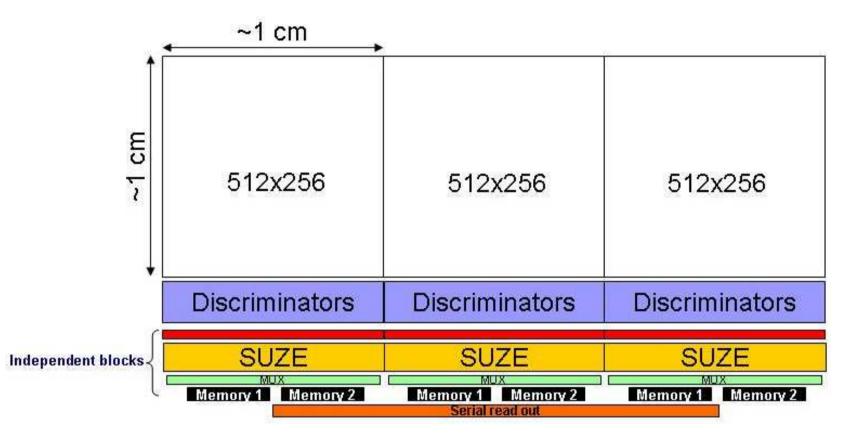
• Differences w.r.t. ULTIMATE :

- * 0.18 μm triple-well HR-epi techno. (instead of 0.35 μm double-well hR-epi)
- * \sim 1×3 cm² large sensitive area (instead of 2×2 cm²)
- * possibly : use of L0 (and L1 ?) trigger decision(s) to squeeze data flow and power
- * possibly double-sided read-out (instead of single-sided) : depends on NI radiation tolerance
- * 1 or 2 output pairs at \gtrsim 200 MHz (instead of 1 output pair at 160 MHz)
- st two \lesssim 200 μm wide raw sequencers (instead of one 350 μm wide sequencer)
 - \triangleright potentially : raw sequencers moved to bottom (requires \sim 6 ML \Rightarrow depends on design duration)


MISTRAL : Main Specifications

• Detection related characteristics :

Pixel dimensions	$\sigma_{R\phi,z}$	read-out	\mathbf{t}_{integ}	P_{diss}	
option 1: 20 $ imes$ 20 μm^2	3.5–4 μm	2-sided	40–50 μs	\lesssim 250(400) mW/cm 2	
option 2: 20 $ imes$ 40 μm^2	5–6 μm	2-sided	20–25 μs	\lesssim 250(400) mW/cm 2	
		1-sided	40–5 0 μs	\lesssim 150(200) mW/cm 2	
STAR : 20.7 $ imes$ 20.7 μm^2	\sim 3.5 μm	1-sided	$<$ 200 μs	\lesssim 150(200) mW/cm 2	
				TPC INNER VESSEL	


- Radiation tolerance at +30°C :
 - st ionising radiation \gtrsim 2 MRad
 - st non-ionising radiation \gtrsim 2imes10 $^{13}n_{eq}$ /cm 2
- Surface to cover :
 - * seemingly at least 3 inner layers (L0, L1, L2) : \triangleright at least 3000 - 4000 cm²
 - * perhaps 2 sensor geometries (?) :

ightarrow 1×3 cm² (L0) and 2×3 cm² (L1-2) \Rightarrow ~ 200 + 500 sensors

MISTRAL : Multi Purpose Architecture

- Modular design :
- ▷ overcome design complexity (frequency, read-out time, layout) over 3 cm sensor extension

- Other advantages :
 - * basic blocks can be reused for other applications : CBM, AIDA, eRHIC, ...
 - * easy for prototype evaluation (\Rightarrow incorporate all pads needed for tests in basic block)

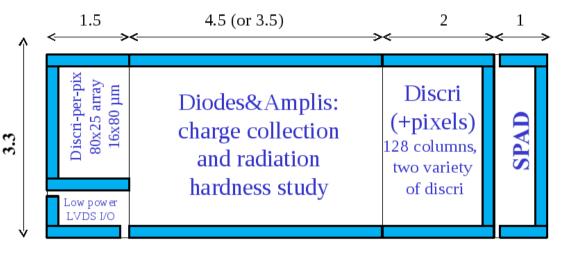
<code>MISTRAL</code> : Moving to 0.18 μm CMOS Technology

- Evolve towards feature size << 0.35 μm :
 - * μ circuits : smaller transistors, more Metal Layers, ...
- * sensing : quadruple well, depleted sensitive volume, ...

- Benefits :
 - * faster read-out \Rightarrow improved time resolution
 - * higher μ circuit density \Rightarrow higher data reduction capability
 - * thinner gates, depletion \Rightarrow improved radiation tolerance (in particular ionising radiation)
- Image Sensor process of Tower/Jazz Semi-Conductor :
 - * systematic contact established with founder (ticketting) \Rightarrow design under way
 - * attractive features of technology (and founder):
 - $-\circ$ optimised sensing systems available and tunable (?) \Rightarrow enhanced SNR
 - \rightarrow high-resistivity epitaxy (1 5 $k\Omega \cdot cm$) \Rightarrow enhanced SNR
 - -- 6 ML, deep P-well, etc.
 - \rightarrow stitching \Rightarrow multireticule surface sensor
 - $-\infty \geq$ 8 Multi-Project-Wafer runs per year \rightarrow Shuttle Nr 62 on 24.10.11
- Synergies :
 - * CBM MVD, AIDA-SALAT, eRHIC VD, BES-3 inner tracker, other ALICE sub-systems, ILD-VTX, ...
 - * SuperB vertex detector: in-pixel μs time-stamping architecture fits in 50×50 μm^2 pixel

MISTRAL : Chip Submission Plans

- Chip submission flow :
 - ★ Q4/2011 : MIMOSA-32 ▷ prototype for technology exploration
 - * Q2/2012 :
 - MIMOSA-22THR ▷ prototype with 128 columns (of 128-256/512 pixels) ended with discriminators
 - $-\infty$ SUZE-02 \triangleright prototype with latch-up free zero-suppression μ circuit and output buffers (trigger ?)
 - * Q2/2013 : FSBB \triangleright Full Scale (1 cm²) Basic Block combining MIMOSA-22THR & SUZE-02 designs
 - * Q2/2014 : MISTRAL \triangleright final sensor \equiv optimised FSBB design, repeated to cover 3–6 cm²

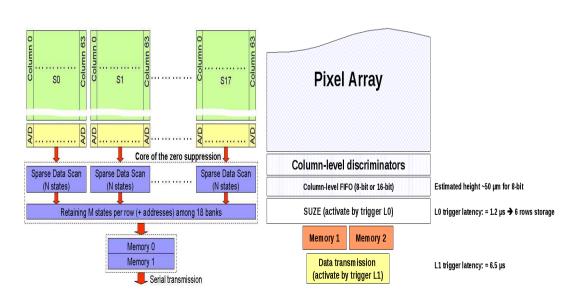

• Still pending :

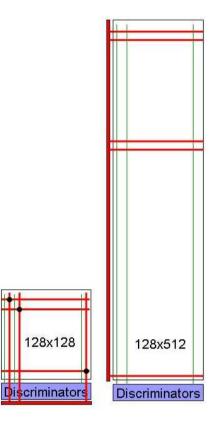
- * building blocks vs radiation tolerance : do we need ELT, latch-up free design, etc. ?????
- * optimisation of data transfer μ circuitry ???
- * integration of trigger information for sensor output filtering ????

MIMOSA-32 : Prototyping a 0.18 μm Process

- 0.18 μm imaging technology options used :
 - * Epitaxial layer \sim 14 μm thick with High-Resistivity (1-5 $k\Omega\cdot cm$)
 - * Quadruple well : deep P-type layer embedding N-well hosting P-моs transistors
 - * MIM capacitor
 - * start with 4 Metal Layers (6 ML run in 2012)
 - * CIS (very low noise) sensing system
- Prototype sub-divided in several blocks : ▷ ▷
 - * Sensing elements and in-pixel amplifiers :
 - ightarrow pixel dimensions : 20imes20, 40, 80 μm^2

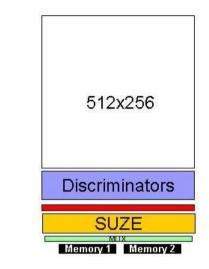
 - ---- N-MOS and P-MOS transistor based amplifiers
 - * Discriminators :
 - Col. // pixel array ended with 1 discriminator/col. (2 variants)
 - ightarrow Pixel array with in-pixel discriminator (16imes80 μm^2 pixels)
 - * Total surface \lesssim 30 ${\rm mm}^2$
- Submission : Octobre 24th, 2011

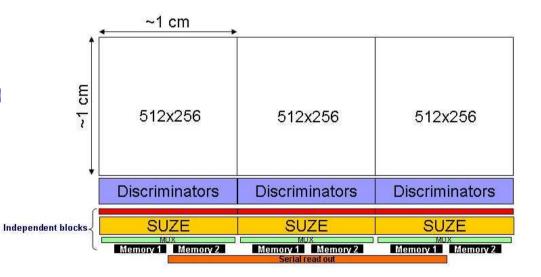



MISTRAL : Architecture Prototyping

- MIMOSA-22THR :
 - * Col. // pixel array with in-pixel ampli + pedestral subtraction (cDS)
 - * Each of 128 columns ended with discriminator + 8 columns without discri.
 - * Pixel array sub-divided in sub-arrays featuring different pixel designs
 - * 2 options for row sequencer :
 - $-\infty$ parallel to columns \Rightarrow dead zone inbetween neighbouring chips
 - $-\infty$ together with signal processing circuitry \Rightarrow avoids the dead zone

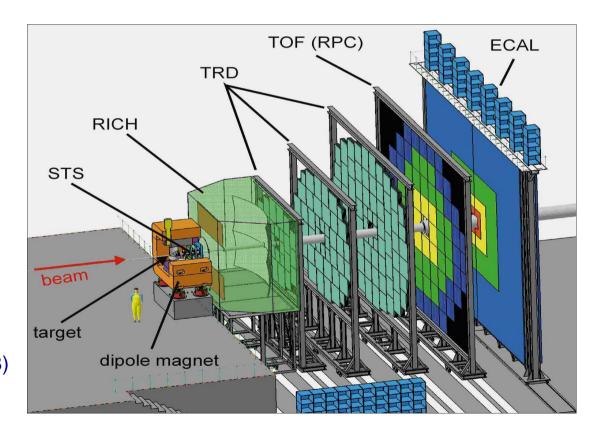
- * $\emptyset \mu$ -circuits & output buffers (\equiv SUZE-01)
- * add trigger L0 info after discriminators for data filtering \Rightarrow flow & power reduction ?
- * add trigger L1 (?) downstream of output buffers for further filtering ?
- Submission \leq Spring 2012
 - \hookrightarrow determine sensor adequacy w.r.t. rad. tol. spec.





MISTRAL : Final Steps

- FSBB (Full Scale Basic Block) :
 - ***** Composition :
 - ightarrow Pixel array with final pixel design (\sim 1 cm 2)
 - $-\infty$ Final r.o. circuitry (\emptyset , filtering, data transmission, ...)
 - All read-out circuitry split in elementary blocks according to stitching design rules
 - * Submission : Spring 2013
- MISTRAL :
 - * Composition :
 - 3 full-size adjacent FSBB (1-sided read-out)
 or 6 half FSBB (2-sided read-out)
 - --- Complemented with serial r.o. circuitry
 - * Submission : Spring 2014



Next Step : CBM-MVD

- Cold Baryonic Matter (CBM) experiment at FAIR:
 - * Micro-Vertex Detector (MVD) made of 3 (2 ?) stations located behind fixed target
 - * double-sided stations equipped with CMOS pixel sensors
 - * operation at negative temperature in vacuum
 - $\, st \,$ each station accounts for \lesssim 0.5 % X_{0}
 - * sensor architecture very close to MISTRAL \rightarrow shorter col. (~ 150 pixels) \triangleright r.o. speed
- Most demanding requirements :
 - ★ ultimately (~ 2020): 3D sensors ≲ 10 µs, > 10¹⁴n_{eq}/cm², ≳ 30 MRad
 ★ intermediate steps: 2D sensors ≲ 30-40 µs, > 10¹³n_{eq}/cm², ≳ 3 MRad
 ★ 1st sensor for SIS-100 (data taking ≥ 2017-18) ▷ MIMOSIS-1

Investigating Large Area Sensors

- Prototype multireticule sensor for "large" area detectors :
 - st 2048imes 3072 pixels (\sim 20 μm pitch)

 \Rightarrow 4×6 cm² sensitive area, 3.5 μm spatial resolution

* requires combining several reticules

 \Rightarrow stitching process \Rightarrow establish proof of principle

- st 2-sided read-out of 1024 rows in \sim 200 μs
 - \Rightarrow 3 planes of Large Area Telescope for AIDA project (EU-FP7)
- * windowing of $\leq 1 \times 6 \text{ cm}^2$ (collimated beam)
 - $\Rightarrow \sim$ 50 μs r.o. time
- * 50-100 μm pitch variants under consideration
 - \Rightarrow trackers & FW disks (e.g. VD for eRHIC)
- Submission scheduled for 2015 :
 - * bonus: avoid paving "large" areas with reticule size sensors
 - \Rightarrow dead zones, material, connectics/complexity
 - * synergy with tracker layers and forward disk projects on collider & fixed target experiments
 - * 3 sensors will compose a beam telescope at CERN (AIDA project deliverable) : SALAT
 - ▷ few ns time stamping resolution associated to each hit by TLU (scintillator)

EXAS	JZAS	EZAS	BZOS	BZOS	BZNS
iscriminator	Ziscriminators	2iscriminators	Discriminatore	Discriminatoral	scriminatore
212×612	213x513	213×213	815×815	212×212	212×512
212×213	213×213	212×212	215x512	212x213	215×512
512x512	512x512	512x512	512x512	512x512	512x512
512x512	512x512	512x512	512x512	512x512	512x512
iscriminator	Discriminators	Discriminators	Discriminators	Discriminators	Discriminato
SUZE	SUZE	SUZE	SUZE	SUZE	SUZE

Besides/Beyond MISTRAL

• Motivations :

- * baseline improvements (e.g. CCE, SNR)
- * extended running conditions or physics goals (e.g. read-out speed)
- Baseline improvements \equiv keep baseline architecture :
 - * use of technology features improving charge collection or noise performance
 - * full use of \geq 6 ML (e.g. row sequencer at bottom)

∗ etc.

- Extended running conditions \Rightarrow modify baseline architecture :
 - * 2 different architectures ;
 - --- parallel rolling shutter (PRS) architecture
 - ***** Each option explores a different optimisation of speed \star resolution \star power :
 - $-\infty$ PRS \Rightarrow slower but more precise and dissipating less power
 - $-\infty$ HDIP \Rightarrow faster and more selective but less precise and dissipating more power

SUMMARY

- Sensor development for STAR-PXL nearly completed
 - ⇒ precious know-how from sensor integration in the HFT (e.g. see talks at this workshop)
- Translation 0.35 $\mu m
 ightarrow$ 0.18 μm CMOS under way :
 - ▷ MIMOSA-32 to be submitted for fabrication on 24.10.2011
 - ▷ design flexible enough to be adaptable to various applications
- First full scale sensor in 0.18 μm technology ready for detector expected in 2014 :
 - * MISTRAL for ALICE-ITS upgrade (if chosen)
 - * based on FSBB to be fabricated in 2013, cornerstone for several other applications
- Next steps : 2015-2016
 - * AIDA SALAT : extension of FSBB to 4×6 cm² using stitching \Rightarrow validation for eRHIC (LDRD)
 - * CBM-MVD : variant of MISTRAL with shorter columns (\equiv integration time) operated in vacuum at T< 0°C
- Numerous spin-offs foreseen \Rightarrow opportunities of combined efforts