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LHC Dark Matter Connection
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LHC Dark Matter Connection: The new paradigm

no mention of a connection, despite a

SUSY WG

mention of LSP to be stable/neutral

because of cosmo reason

LHC: Symmetry breaking and
Higgs
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The new paradigm why? Cosmology in the era of precision

observed temperature anisotropies

(related to the density fluctuations

at the time of emission) is

10−5
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Cosmology in the era of precision measurement 1.

Pre-WMAP and WMAP vs Pre-LEP and LEP
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Cosmology in the era of precision measurement 2.

angular power spectrum of the CMB, pre-WMAP

and WMAP
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now

Planck+SNAP will do even better (per-cent precision) like from LEP to LHC+LC
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The need for Dark Matter

Newton’s law → v2
rot./r = GN M(r)/r2

(tracer star at a distance r from centre of mass distribution )

We are not in the centre of the universe Dark Matter= New Physics
we are not made up of the same stuff as most of our universe
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Cosmology in the era of precision measurement I: standard candles
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Cosmology in the era of precision measurement II: CMB

observed temperature

anisotropies (related

to the density

fluctuations at the

time of emission) is

10−5
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Pre-WMAP and WMAP vs Pre-LEP and LEP

power spectrum of anisotropies, WMAP vs Pre-WMAP
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now

Planck+SNAP will do even better (per-cent precision)

improvement like going from LEP to LHC+ILC

LHC, PLanck → 2007 ILC,SNAP → 2015

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 10/57



F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 11/57



Matter Budget and Precision 2.

Stars
23%

Baryons∼ 4%
ν(Ων < 0.01)

Dark Matter

23%

73%
Dark Energy

t0 = 13.7 ± 0.2 Gyr (1.5%) α−1 = 10t0(10
−7%)

Ωtot = 1.02 ± 0.02(2%) ρ = Ωtot(∼ 0.1%)

ΩDM = 0.23 ± 0.04(17%) sin2 θeff = ΩDM(0.08%)
We should then be able to match the present WMAP precision!...

once we discover susy dark matter
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Matter Budget and Precision 3. Testing the cosmology

Present measurement at 2σ 0.0975 < ω = ΩDMh2 < 0.1223 (6%)

future (SNAP+Planck) → < 1%

Particle Physics ↔Cosmology through ω

• is wholly New Physics

• But will LHC, ILC see the “same” New Physics?

• New paradigm and new precision: change in perception about this connection

• ω used to: constrain new physics (choice of LHC susy points, benchmarks)

• Now: if New Physics is found, what precision do we require on colliders and theory to

constrain cosmology? (Allanach, Belanger, FB, Pukhov JHEP 2004)

strategy/requirements on theory and collider measurements to match the present/future

precision on ω
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Indirect Detection
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direct and indirect
Direct and Indirect Searches

p̄, e+ , γ, ν, . . .

χ0

1

CDMS, Edelweiss, DAMA, Genuis, ..

χ

ν

χχ → νν̄

Amanda, Antares, Icecube, ..
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Underground direct detection
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• within WMAP
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Annihilation into photons

dΦγ

dΩdEγ
=

∑

i

dN i
γ

dEγ
σiv

1

4πm2
χ

︸ ︷︷ ︸

Physique des Particules

∫

ρ2dl
︸ ︷︷ ︸

Astro

γ′s: Point to the source, independent of propagation model(s)

• continuum spectrum from χ̃0
1χ̃0

1 → ff̄ , . . ., hadronisa-

tion/fragmentation (→ π0 → γ ) done through isajet/herwig

• Loop induced mono energetic photons,γγ, Zγ final states

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...
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SloopS, micrOMEGAs,AMS/HESS
Propagation

GUT Scale Suspect micrOMEGAs PYTHIA Halo model Cosmic Ray Fluxes

charged

γ

SloopS
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SIMULATION:

Parameterising the halo profile:

(α, β, γ) = (1, 3, 1), a = 25kpc. (core radius), r0 = 8kpc (distance to galactic centre),

ρ0 = 0.3 GeV/cm3 (DM density), opening angle cone 1o

SUSY parameterisation

m0 = 113GeV, m1/2 = 375 GeV, A = 0, tan β = 20, µ > 0

γ lines could be distinguished from diffuse background
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Symmetry breaking and DM

The SM Higgs naturalness problem has been behind the construction of many models

of New Physics: at LHC not enough to see the Higgs need to address electroweak

symmetry breaking

DM is New Physics, most probable that the New Physics of EWSB provides DM

candidate, especially that

All models of NP can be made to have quite easily and naturally a conserved

quantum number, Z2 parity such that all the NP particles have Z2 = −1 (odd)

and the SM part. have it even

Then the lightest New Physics particle is stable. If it is electrically neutral then can be

a candidate for DM

This conserved quantum number is not imposed just to have a DM candidate it has

been imposed for the model to survive
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Symmetry breaking and DM

Survival

evade proton decay

indirect precision measurements (LEP legacy)

Examples:

R-parity and LSP in SUSY (majorana fermion)

KK parity and the and LKP in UED (gauge boson)

T-parity in Little Higgs with the LTP (gauge boson)

LZP (warped GUTs) (actually it’s a Z3 here) (Dirac fermion)

even modern technicolour has a DM candidate
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New Physics or DM Physics and ET miss

Is it necessarily DM candidate?
stable at the scale of LHC detectors, 1ms, not age of the

Universe....
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in 1998 we were told to expect an early SUSY discovery
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Discovery of miss Et
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But fake miss Et: Not even SM physics!

Miss Et pointing along jets

All machine garbage ends up in Et miss trigger
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ATLAS TDR (same with CMS)

ATLAS TDR 98
(mSUGRA point, PreWMAP)
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ATLAS TDR (same with CMS)

ATLAS TDR 98
(mSUGRA point, PreWMAP)

ATLAS 2006
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ATLAS TDR (same with CMS)

ATLAS TDR 98
(mSUGRA point, PreWMAP)

ATLAS 2006

What happened? Real Et miss from neutrinos
Complex multi-body final states: can not rely on MC alone. Need
data and MC. Improve NLO multilegs, matching,...
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Next step: Properties of DM, example SPIN?? Couplings
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Synergy Collider-Cosmology-Astrophysics

What does it take to prove it is a DM candidate

the right relic density

has to confirm the rate of Dark Matter Direct Detection

has to confirm Indirect Detection rates: annihilations into anti-matter, photons,

neutrinos

But all three items carry substantial assumptions or drastic differences in the

modelling of astrophysics

one is assuming detection is assured in DD and Ind. Detection

Important to extract as precise as possible the microscopic properties of DM,

interaction

constrain the cosmological models

constrain the astrophysics models: DM distribution, clumping, perhaps propagation

may even use some hints from astrophysics to input at colliders
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Collider Inputs

SUSY Parameters

Annihilation N Interaction

Relic Density        Indirect Detection Direct Detection

Astrophysical and Cosmological Inputs
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Example 1: Relic Density
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Constraining relic density parameter space:SUSY unconstrained

Orders of magnitude, DM cross sections orders of
magnitude also (same for direct and indirect detection)
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formation of DM: Very basics of decoupling

At first all particles in thermal equilibrium, frequent

collisions and particles are trapped in the cosmic soup

universe cools and expands: interaction rate too small or

not efficient to maintain Equil.

(stable) particles can not find each other: freeze out and

get free and leave the soup, their number density is

locked giving the observed relic density

from then on total number (n × a3) = cste

Condition for equilibrium: mean free path smaller than

distance traveled: lm.f.p < vt lm.f.p = 1/nσ

t ∼ 1/H or Equilbrium: Γ = nσv > H

freeze ou/decoupling occurs at T = TD = TF : Γ = H and Ωχ̃0
1
h2 ∝ 1/σχ̃0

1
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Relic Density: Boltzman transport equation
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• at early times Γ ≫ H → n ∼ neq

• T ∼ m X not enough energy to give

X → χ̃0
1χ̃0

1 n drops and so does Γ

Tf ≃ m/25

Ωχ̃0
1
h2

∝ 1/σχ̃0
1
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All in all...

Ωχ̃0
1
h2 ≃ 109

MP

xf
√

g⋆

1
<σ

χ̃0
1

v>

Ωχ̃0
1
h2 ∼ 0.1 →< σχ̃0

1
v >∼ 1pb

order of magnitude of LHC cross sections

< σχ̃0
1
v >= πα2/m2

Ωχ̃0
1
h2 ∼ (m/TeV )2 → m ∼ G

−1/2

F ∼ 300GeV

but with the precision on the relic that we have now (6%) and the
many possibilities from the particle physics perspectives, need
more than orders of magnitudes calculations.
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Relic Density: Loopholes and Assumptions

At early times Universe is radiation dominated: H(T ) ∝ T 2
◭

Expansion rate can be enhanced by some scalar field (kination), extra dimension

H2 = 8πG/3 ρ(1 + ρ/ρ5), anisotropic cosmology,...

Entropy conservation (entropy increase will reduce the relic abundance

Wimps (super Wimps) can be produced non thermally, or in addition produced in

decays of some field (inflaton,....)
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Almost Wimps: Swimps, Fen et al;

WIMP

superWIMP

Assuming that each WIMP

decay produces one one

sWimp, the inherited density

is simply

ΩsWimp =
msWimp

Wimp

ΩWimp

beware though: If couplings

very weak, decays may be very

late and would directly impact

on BBN, CMB, diffuse γ flux

(energy released in visible de-

cay products serious stopper!)

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 36/57



History of the Universe,

WIMP density depends on the history of the Universe before BBN (0.8MeV)

(abundance of light elements), large time scale between freeze-out and BBN

for BBN to hold it is enough that the earliest and highest temperature during the

radiation era TRH > 4MeV

TRH > is to be understood as the temp. which after a period of rapid

inflationary expansion the Universe reheats (defrosts) and the expanding plasma

reaches full thermal equilibrium
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History of the Universe, TRH >

Density may decreased by reducing rate of thermal production, possibility to have tiny

TRH < Tf.o or by production of radiation after freeze-out

increased by injecting Wimps from decays or/and increasing the expansion rate

Open up more possibilities, constrain Physics at the Planck scale??
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Non Standard Cosmo

Prototype: A scalar field decaying not long before BBN Giudice, Kolb; Gelmini and

Gondolo, ....

dρφ

dt
= −3Hρφ − Γφρφ

dn

dt
= −3Hn − 〈σv〉 (n2 − n2

eq) +
b

mφ
Γφρφ

ds

dt
= −3Hs +

Γφρφ

T

where mφ, Γφ, and ρφ are respectively the mass, the decay width and the energy density of
the scalar field, and b is the average number of neutralinos produced per φ decay. Notice
that b and mφ enter into these equations only through the ratio b/mφ

(eta = b (100TeV/mφ) and not separately. Finally, the Hubble parameter, H, receives
contributions from the scalar field, Standard Model particles, and supersymmetric particles,

H2 =
8π

3M2
P

(ρφ + ρSM + ρχ) .

TRH = 10MeV (mφ/100TeV )3/2(MP /Λ) Γφ ∼ m3
φ/Λ2
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Non Standard Cosmo, Figs Gelmini and Gondolo
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Non Standard Cosmo
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Non Standard Cosmo
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Important Message

The bulk region can be correct, good news for parameter extraction at LHC

Large Wino cross sections that are good for Indirect Detection not ruled out
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reconstruct Properties of DM

measure masses and all
important relevant
couplings (bino/wino/
components,....., mixing)
that enter the relic
calculation

Most often this is also
what enters the indirect
detection

strive to measure the cou-
pling of the Higgs to the
DM
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The mSUGRA inspired regions
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LHC+ILC
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τ̃1 co-annihilation region: Model Independent
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direct and indirect
Direct and Indirect Searches

p̄, e+ , γ, ν, . . .

χ0

1

CDMS, Edelweiss, DAMA, Genuis, ..

χ

ν

χχ → νν̄

Amanda, Antares, Icecube, ..
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Annihilation into photons

dΦγ

dΩdEγ
=

∑

i

dN i
γ

dEγ
σiv

1

4πm2
χ

︸ ︷︷ ︸

Particulephysics

∫

(ρ + δρ)2dl
︸ ︷︷ ︸

Astro

γ′s: Point to the source, independent of propagation model(s)

• continuum spectrum from χ̃0
1χ̃0

1 → ff̄ , . . ., hadronisa-

tion/fragmentation (→ π0 → γ ) done through isajet/herwig

• Loop induced mono energetic photons,γγ, Zγ final states

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...
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Halo Profile Modelling
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SloopS, micrOMEGAs,AMS/HESS
Propagation

GUT Scale Suspect micrOMEGAs PYTHIA Halo model Cosmic Ray Fluxes
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SIMULATION:

Parameterising the halo profile:

(α, β, γ) = (1, 3, 1), a = 25kpc. (core radius), r0 = 8kpc (distance to galactic centre),

ρ0 = 0.3 GeV/cm3 (DM density), opening angle cone 1o

SUSY parameterisation

m0 = 113GeV, m1/2 = 375 GeV, A = 0, tan β = 20, µ > 0

γ lines could be distinguished from diffuse background
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Annihilation into e+, p̄, D̄

dΦf̄

dΩdEf̄
=

∑

i

dN i
f̄

dEf̄

σiv
1

4πm2
χ

︸ ︷︷ ︸

Particlephysics

∫

(ρ + δρ)2Pprop

︸ ︷︷ ︸

Astro

γ′s: Model of propagation and background

• Halo Profile modeling, clumps, cusps,..boost factors,..

If particle Physics fixed, constrain astrophysics

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...
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Otherwise tempted to fit with large uncertainties
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Wim de Boer and Co
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G. Kane and Co
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from a few days back in Moriond..

F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 – p. 55/57



direct detection

Uncertainties coming from nuclear form factors (still large,
strange component), velocity distribution,...
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• within WMAP
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Summary

Cosmology has entered the era of precision measurements. Particle Physics

component of DM must be extracted unambiguously. If large clean and understood

signals of Etmiss at LHC there is most probably a link with DM

Strive for as much as possible for a model independent reconstruction of the

important relevant parameters of DM

One may be lucky to be a good region of the New physics parameter space

Other hints and constraint can come from observables not necessarily with Etmiss,

the rest of the NP spectrum even Higgs

In a first stage one can fit to constrained models

strategy would also depend on how the astrophysics scene evolves

in the most lucky situation an extraordinary synergy between collider physics,

astrophysics and cosmology, a glimpse on the history of the Universe, remnants of the

Planck scale???
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